一、nvidia驱动安装
1、删除先前驱动
apt-get remove --purge nvidia*
2、把nouveau驱动加入黑名单
sudo nano /etc/modprobe.d/blacklist-nouveau.conf
在blacklist-nouveau.conf
文件中加入以下:
blacklist nouveau
blacklist lbm-nouveau
options nouveau modeset=0
alias nouveau off
alias lbm-nouveau off
3、ppa源安装驱动,驱动版本查找:点此链接
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-390
sudo apt-get install mesa-common-dev
sudo apt-get insatll freeglut3-dev
4、测试
nvidia-smi
若出现GPU列表,则安装成功;如果没有安装成功则可以尝试重启。
提示:安装驱动以后会出现图像界面显示不正常或循环登录的问题,因此后续操作需要远程登录。
二、CUDA安装
1、安装CUDA前我们需要对gcc和g++降级
首先安装gcc6和g++6
sudo apt-get install gcc-6
sudo apt-get install g++-6
进入到/usr/bin目录下
ls -l gcc*
发现/usr/bin/gcc -> gcc-7.0
gcc连接到7.0,我们需要降级到6,方法如下:
sudo mv gcc gcc.bak #备份
sudo ln -s gcc-6 gcc #重新链接
对g++也进行同样的修改:
ls -l g++*
sudo mv g++ g++.bak
sudo ln -s g++-6 g++
查看gcc和g++版本
gcc -v
g++ -v
发现都是6,则成功。
2、下载CUDA9:点此链接
3、安装CUDA9
sudo sh cuda_9.0.176_384.81_linux.run --override
- 按q键跳过安装须知,输入accept接受
- 问驱动是否安装,输入n,选择不装,已经装过了
- 问CUDA是否安装,输入y安装,回车安装在默认位置上
- 问是否创建链接,输入y,选择创建
- 问sample是否安装,输入no
4、添加路径库
打开bashrc
:
vim ~/.bashrc
在其中添加以下内容:
export PATH=”/usr/local/cuda-9.0/bin:$PATH”
export LD_LIBRARY_PATH=”/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH”
可以用echo $PATH
和 echo $ LD_LIBRARY_PATH
检测是否添加成功。
三、安装cuDNN
1、下载cuDNN:点此链接
2、下载cuDNN9.0的linux包(tgz格式)
3、解压
tar –xzvf cudnn-9.0-linux-x64-v7.1.tgz
4、复制
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
5、添加权限
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
四、安装Tensorflow-gpu
官方推荐通过Virtualenv来安装tensorflow-gpu,来进行项目隔离,这是在开发环境,如果在生产环境,可以走docker方式来部署。这里采用Virtualenv方式来安装,执行如下命令:
sudo apt-get install python3
sudo apt-get install python3-pip python3-dev python-virtualenv
安装完pip3、virtualenv后,可进入virtualenv安装tensorflow-gpu,执行如下命令:
mkdir -p ~/tensorflow/venv
virtualenv -p python3 ~/tensorflow/venv 创建virtualenv环境
cd ~/tensorflow/venv
source bin/activate
环境用的时候需要激活,
deactivate
退出激活
采用国内源下载tensorflow-gpu:
pip3 install --index-url http://pypi.douban.com/simple --trusted-host pypi.douban.com --upgrade tensorflow-gpu
最后通过 pip3 show tensorflow-gpu
可检查tensorflow-gpu的安装路径是否在该虚拟环境内,以隔绝与全局的site-packages
五、卸载
1、CUDA
sudo /usr/local/cuda-9.0/bin/uninstall_cuda_9.0.pl
2、nvidia驱动
nvidia-uninstall
或
sudo sh NVIDIA-linux-x86_64-390.25.run –uninstall
3、cuDNN
直接remove掉。