深度学习
StarCoo
这个作者很懒,什么都没留下…
展开
-
CS231n课程学习笔记(零)——Jupyter Notebook使用方法
完成CS231n作业可以需要借助Jupyter Notebook工具。原创 2018-02-26 16:17:06 · 1881 阅读 · 0 评论 -
CS231n课程学习笔记(三)——Softmax分类器的实现
翻译笔记:https://zhuanlan.zhihu.com/p/21930884?refer=intelligentuni 参考资料:http://blog.csdn.net/pjia_1008/article/details/66972060作业讲解求损失Loss线性模型:y=Wxy=Wxy=WxSoftmax:Si=eyi∑jeyjSi=eyi∑jeyj\disp...原创 2018-02-27 18:50:45 · 10527 阅读 · 2 评论 -
CS231n课程学习笔记(二)——SVM的实现
翻译笔记:https://zhuanlan.zhihu.com/p/21930884?refer=intelligentunit 作业讲解视频地址:http://www.mooc.ai/course/364/learn#lesson/2118作业讲解求损失Loss多分类线性SVM:y=Wxy=Wxy=WxHinge Loss(Max margin),margin=1: ...原创 2018-02-27 15:36:03 · 2548 阅读 · 0 评论 -
CS231n课程学习笔记(一)——KNN的实现
翻译笔记:https://zhuanlan.zhihu.com/p/21930884?refer=intelligentunit 作业讲解视频:http://www.mooc.ai/open/course/364作业讲解KNN的实现主要分为两步:训练:分类器简单地记住所有的数据测试:测试数据分别和所有训练数据计算距离,选取k个最近的训练样本的label,通过投票(vote...原创 2018-02-26 22:15:05 · 5264 阅读 · 4 评论 -
CS231n课程学习笔记(四)——反向传播
转载自:[CS231n课程笔记翻译:反向传播笔记] 本节将帮助读者对反向传播形成直观而专业的理解。反向传播是利用链式法则递归计算表达式的梯度的方法。理解反向传播过程及其精妙之处,对于理解、实现、设计和调试神经网络非常关键。转载 2018-02-27 22:58:03 · 667 阅读 · 0 评论 -
CS231n课程学习笔记(五)——卷积神经网络
转载自:[CS231n课程笔记翻译:卷积神经网络笔记] 详细介绍了卷积神经网络各个层的结构与作用,参数设置的细节。转载 2018-02-28 18:16:48 · 2178 阅读 · 0 评论 -
梯度下降有关概念总结
在之前的博客 Coursera 机器学习(by Andrew Ng)课程学习笔记 Week 1——简单的线性回归模型和梯度下降 我们已经介绍了损失函数和梯度下降的概念。这一部分我们会更加详细介绍这一部分。原创 2018-03-01 17:03:50 · 555 阅读 · 0 评论 -
CS231n课程学习笔记(七)——数据预处理、批量归一化和Dropout
CS231n课程笔记翻译:神经网络笔记 2。主要介绍了常见的数据预处理操作、如何初始化权重以及正则化的几种方式,其中,正则化中着重讲解了Dropout。原创 2018-03-01 20:54:30 · 1630 阅读 · 0 评论 -
CS231n课程学习笔记(六)——常用的激活函数总结
参考CS231n课程,总结了几种常用的激活函数原创 2018-03-01 18:20:33 · 859 阅读 · 0 评论 -
Ubuntu18.04Nvidia驱动、CUDA、cuDNN及tensorflow-gpu安装
一、nvidia驱动安装1、删除先前驱动apt-get remove --purge nvidia*2、把nouveau驱动加入黑名单sudo nano /etc/modprobe.d/blacklist-nouveau.conf在blacklist-nouveau.conf文件中加入以下:blacklist nouveaublacklist lbm-nouveau...原创 2018-10-09 14:55:28 · 1760 阅读 · 0 评论