深度学习中的激活函数SoftMax函数的FPGA设计与实现(三)(new trip)

本文探讨了在FPGA上高效实现神经网络中SoftMax激活函数的几种方法,包括软件法、类CPU法及其局限性。重点介绍了通过逻辑分析法,利用对数的性质将除法转换为减法,结合泰勒公式进行指数运算的近似,以减少时钟周期和提高计算速度。文章还提到了数据传输协议AXI4在FPGA设计中的应用。
摘要由CSDN通过智能技术生成

学习更多相关知识,关注博主知乎账号,用户名Trustintruth   https://www.zhihu.com/people/suo-yi-xin-90/activities

如果我们之前做的是一个过河的独木舟的话,或许发现了构建桥的蓝图了

就像刚这句话一样,之前我们做的努力或许没有错,但是他最终就实现了功能而已,并不是一个最优方案,或者换句话说,之前的方法我们速度与面积,我们都没有优势。

我们现在来重新分析这个题目

从这个式子以及我们第一次分析的结果来看,可以得出很简单的结论

1.实现这个式子,我们需要完成加法运算n-1次,指数运算n次,除法运算一次。

2.要完成这个式子要完成所有输入之后才可以进行除法运算。换句话说,该结果由于分子是全部输入的指数和,所以不可以依次输入后每次运算在上一次运算的结果之上再次进行计算。

根据上边两个显而易见的结论,我们可以得出第一种方法实现:

软件法

这种方法使用ARM直接完成编程。由于ARM相对于其他种方法相对来说实现相对简单,思路也就是前博客的思想。由于博主对ARM了解过浅,此处也不敢延伸。

但是像这种软件实现的

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值