深度学习中的激活函数SoftMax函数的FPGA设计与实现 (一)

本文介绍了在FPGA上实现深度学习中SoftMax激活函数的思路和挑战。作者计划详细阐述如何处理负数表示、指数运算和除法运算等关键步骤,旨在将SoftMax算法转化为硬件可实现的形式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习更多相关知识,关注博主知乎账号,用户名Trustintruth   https://www.zhihu.com/people/suo-yi-xin-90/activities

近期一来希望趁着假期可以充实一下自己,二来想做一些算法的东西,最终决定试一试水深度学习中的激活函数。计划用一段时间将这个不算是很难得算法使用FPGA实现出来。

在收集资料的阶段,在博客和知乎中找了许多许多的资料,在此推荐一篇知乎的专栏,非常适合像我一样的从零开始接触这方面的人来理解SoftMax算法。

https://zhuanlan.zhihu.com/p/25723112

话不多说,我们开始进入正题,在前人的讲解下为大家再嚼一嚼SoftMax这块骨头。

首先,对于SoftMAx这个算法本身还是不算非常难的,对于其实现的功能,引用知乎专栏里的一段话

 

引自知乎 例如在取max时候,A与B,如果A大于B,那么取A。但如果我希望分值大的那部分经常取到,而分值小的一部分偶尔会取到。那么我使用softmax就可以了。依然是A和B,A>B,按照softmax来算取A和B的概率,那么A的softmax值大于B的,所以A会经常取到,而B也会偶尔取到。概率与他们本来的大小有关。


这段话很清楚地把函数的作用告诉了我们,即将输入的数据映射到(

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值