参考文献:
【卡尔曼滤波】图文结合带你详细推导卡尔曼滤波(超详解)-CSDN博客
本文基于上述参考文献,进行进一步的理解。
卡尔曼滤波是将 预测的值和量测的值结合起来,获得更接近真实情况的数值。
目前,我的理解只能在文中举的一个特定的例子上,即:预测一个机器人的某一时刻的速度和位置,下面的描述均以这个例子为例进行说明。
预测值是指机器人的速度和位置
已知当前的机器人的位置和速度,机器人下一时刻的速度和位置可以通过一个模型计算出来,这里可以通过,加速度对时间的积分获得速度,通过对速度的积分获得位置。因此,从公式上可以写为:

x_k
表示的是k时刻的预测值,包含了p位置和v速度两个值。
P_k
表示的是p和v的协方差,协方差是两个变量的相关性。

表示的是p和v的更新公式,即k时刻的p和v与k-1时刻的p和v之间的关系。

这里,把上面的方程表示为矩阵的形式,则F_k

最低0.47元/天 解锁文章
894

被折叠的 条评论
为什么被折叠?



