大模型的部署方法三:使用Xinference部署

Xinference是一个分布式推理框架,它支持一键部署各种模型,包括大型语言模型(LLMs)。

使用Xinference部署AI大模型的步骤:

一、安装Xinference

1)环境准备:

  • 确保您的系统上安装了Python 3.9或以上版本。
  • 安装Docker(如果选择使用Docker部署)。

2)安装Xinference:

  • 通过Python的包管理工具pip安装Xinference:
pip install "xinference[all]"
  • 如果只需要特定的功能,可以安装特定的组件而不是全部组件。

3)配置Xinference:

根据需要配置Xinference的设置,如模型源、工作目录等。


二、部署模型

4)启动Xinference服务:

  • 使用命令行启动Xinference服务:
xinference-local -H 0.0.0.0

这个命令会启动Xinference服务,并允许非本地客户端通过机器的IP地址访问。

5)访问WebGUI:
在浏览器中访问http://localhost:9777来访问Xinference的WebGUI界面。

6)部署模型:

  • 在WebGUI界面中,选择“Launch Model”标签,搜索并选择您想要部署的模型。
  • 根据模型的需要配置启动参数,然后点击“Launch”按钮来部署模型。

7)下载模型参数:

第一次启动模型时,Xinference会从指定的模型源(如HuggingFace)下载模型参数。


三、使用模型

8)与模型交互:

  • 部署完成后,在“Running Models”页面查看运行中的模型。
  • 使用WebGUI或API接口与模型进行交互。

四、多模态模型和Embedding模型

9)部署多模态模型:

如果需要部署多模态模型(即能够处理图像等非文本输入的模型),在“Model Ability”过滤器中选择相应的模型类型。

10)部署Embedding模型:

Embedding模型用于将文本转换为向量。部署Embedding模型与部署其他模型类似,但不需要配置额外的参数。


五、高级使用

11)使用API接口:

通过API接口调用Xinference服务,可以使用Curl或其他HTTP客户端工具。

12)集群模式部署:

Xinference支持集群模式部署,以提高大模型的可用性和扩展性。

13)故障自动重启:

Xinference具有故障自动重启功能,提高服务的稳定性。


六、维护和监控

15)监控服务状态:

定期检查Xinference服务的状态,确保其正常运行。

16)日志管理:
查看Xinference的日志文件,以便于故障排查和性能监控。

请注意,Xinference的具体部署步骤可能会根据版本更新和具体使用场景有所不同。建议参考最新的官方文档或社区指南以获取详细信息。


最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频,免费分享!

一、大模型全套的学习路线

L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署

在这里插入图片描述

达到L4级别也就意味着你具备了在大多数技术岗位上胜任的能力,想要达到顶尖水平,可能还需要更多的专业技能和实战经验。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

四、AI大模型商业化落地方案

在这里插入图片描述

作为普通人在大模型时代,需要不断提升自己的技术和认知水平,同时还需要具备责任感和伦理意识,为人工智能的健康发展贡献力量。

有需要全套的AI大模型学习资源的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费


如有侵权,请联系删除。

### 关于 Xinference:latest 版本的信息 Xinference 是一个用于模型推理的服务框架,支持多种后端引擎。为了获取 `xinference:latest` 的版本信息和使用指南,可以访问官方文档页面[^2]。 #### 获取最新版信息 对于想要了解最新的稳定发布版本及其特性,推荐定期查看官方网站上的更新日志部分。通常,在项目的 GitHub 发布页或是 PyPI 页面也会有详细的变更记录说明。 #### 使用指南概览 ##### 创建合适的 Python 环境 确保已准备好 Python 3.9 或更高版本的环境来运行 Xinference 应用程序。一种简便的方法是通过 Conda 来管理依赖关系并建立一个新的虚拟环境: ```bash conda create --name xinference python=3.11 conda activate xinference ``` 这一步骤有助于隔离项目所需的库文件和其他全局安装包之间的冲突问题[^4]。 ##### 安装必要的软件包 依据需求选择不同的方式来扩展功能模块。例如,如果计划利用 Hugging Face 的 Transformer 模型执行自然语言处理任务,则可以通过下面这条指令完成相关组件的一键部署: ```bash pip install "xinference[transformers]" ``` 同样地,针对大型语言模型(LLMs),可以选择 VLLM 引擎作为加速选项之一: ```bash pip install "xinference[vllm]" ``` 甚至可以直接组合两者一起安装以获得更广泛的支持范围: ```bash pip install "xinference[transformers,vllm]" ``` 上述操作会自动下载并配置好所有必需项以便后续调用[^3]。 ##### 启动本地实例服务 一切就绪之后,只需简单输入如下命令即可激活本地服务器节点: ```bash $ xinference-local ``` 此时应该能够正常监听来自客户端发出的各种请求,并返回相应的计算结果了[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值