本仓库实现了一个基于BERT的意图(intent)和槽位(slots)联合预测模块。想法上与JoinBERT类似,利用 [CLS]
token对应的last hidden state去预测整句话的intent,并利用句子tokens的last hidden states做序列标注,找出包含slot values的tokens。
你可以自定义自己的意图和槽位标签,并提供自己的数据,通过下述流程训练自己的模型,并在JointIntentSlotDetector
类中加载训练好的模型直接进行意图和槽值预测。
一、运行环境
Python 3.8
Pytorch 1.10
Huggingface Transformers 4.11
二、数据准备
模型的训练主要依赖于三方面数据:
-
训练数据:以json格式给出,每条数据包括三个关键词:text表示待检测的文本,intent代表文本的类别标签,slots是文本中包括的所有槽位以及对应的槽值,以字典形式给出。
-
在data/路径下,给出了SMP2019数据集作为参考,利用data/SMP2019/split_data.py,我们可以再将SMP2019的所有数据拆分成一个训练集split_train.json和一个测试集split_test.json。数据样例如下:
{
"text": "搜索西红柿的做法。",
"domain": "cookbook",
"intent": "QUERY",
"slots": {"ingredient": "西红柿"}
}
3. 意图标签:以txt格式给出,每行一个意图,未识别意图以[UNK]标签表示。以SMP2019为例:
[UNK]
LAUNCH
QUERY
ROUTE...
4. 槽位标签:与意图标签类似,以txt格式给出。包括三个特殊标签: [PAD]
表示输入序列中的padding token, [UNK]
表示未识别序列标签, [O]
表示没有槽位的token标签。对于有含义的槽位标签,又分为以’B_'开头的槽位开始的标签, 以及以’I_'开头的其余槽位标记两种。
[PAD]
[UNK]
[O]
I_ingredient
B_ingredient
...
三、模型训练
可以使用以下命令进行模型训练,这里我们选择在bert-base-chinese
预训练模型基础上进行finetune:
python train.py \
--cuda_devices 0 \
--tokenizer_path "bert-base-chinese" \
--model_path "bert-base-chinese" \
--train_data_path "path/to/data/split_train.json" \
--test_data_path "path/to/data/split_test.json" \
--intent_label_path "path/to/data/intent_labels.txt" \
--slot_label_path "path/to/data/slot_labels.txt" \
--save_dir "/path/to/saved_model/" \
--batch_size 32 \
--train_epochs 5
意图与槽位预测
训练结束后,我们通过在JointIntentSlotDetector类中加载训练好的模型进行意图与槽位预测。
from
detector
import
JointIntentSlotDetector
model = JointIntentSlotDetector.from_pretrained(
model_path='path/to/saved_model/model',
tokenizer_path='path/to/saved_model/tokenizer/',
intent_label_path='path/to/data/intent_labels.txt'
slot_label_path='path/to/data/slot_labels.txt'
)
print(model.detect('西红柿的做法是什么'))
# outputs:
# {"text": "西红柿的做法是什么","intent": "QUERY","slots": {"ingredient": ["西红柿"]}}
参考:https://github.com/Linear95/bert-intent-slot-detector
四、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】