《深度学习入门:基于Python的理论和实现》本书是深度学习的入门书,深入浅出地剖析了深度学习的原理和相关技术。
书中使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。适合深度学习初学者阅读,也可作为高校教材使用。
有需要
《深度学习入门:基于Python的理论和实现》
书籍PDF文档,可以微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费】
书籍目录内容(部分)
第1章 Python入门
介绍了Python的基础语法,包括数据类型、变量、列表、字典等。引入了NumPy库,用于高效地进行数值计算。介绍了Matplotlib库,用于绘制图形和数据可视化。
- 1.1 Python是什么
- 1.2 Python的安装
- 1.3 Python解释器
- 1.4 Python脚本文件
- 1.5 NumPy
- 1.6 Matplotlib
- 1.7 小结
第2章 感知机
解释了感知机的基本概念和原理,它是一种简单的线性分类模型。通过与门、与非门和或门的例子,展示了感知机如何工作。讨论了感知机的局限性,并引入了多层感知机来解决非线性问题。
- 2.1 感知机是什么
- 2.2 简单逻辑电路
- 2.3 感知机的实现
- 2.4 感知机的局限性
- 2.5 多层感知机
- 2.6 从与非门到计算机
- 2.7 小结
第3章 神经网络
介绍了神经网络的基本概念,包括神经元、激活函数和层。解释了多层感知机如何通过将多个感知机层叠起来来解决非线性问题。介绍了NumPy在神经网络中的应用,包括多维数组的运算和矩阵乘法。实现了一个简单的3层神经网络,并用于手写数字识别。
- 3.1 从感知机到神经网络
- 3.2 激活函数
- 3.3 多维数组的运算
- 3.4 3层神经网络的实现
- 3.5 输出层的设计
- 3.6 手写数字识别
- 3.7 小结
第4章 神经网络的学习
介绍了神经网络的学习过程,包括损失函数的定义和梯度下降法的应用。通过数值微分的方法计算梯度,用于更新神经网络的权重。实现了mini-batch学习和基于测试数据的评价。
- 4.1 从数据中学习
- 4.2 损失函数
- 4.3 数值微分
- 4.4 梯度
- 4.5 学习算法的实现
- 4.6 小结
第5章 误差反向传播法
介绍了计算图和链式法则的基本概念,用于理解误差反向传播法的原理。实现了加法节点、乘法节点和激活函数层的反向传播。介绍了Affine层和Softmax-with-Loss层的实现,并展示了如何将它们组合成完整的神经网络。实现了误差反向传播法的梯度确认和学习过程。
- 5.1 计算图
- 5.2 链式法则
- 5.3 反向传播
- 5.4 简单层的实现
- 5.5 激活函数层的实现
- 5.6 Affine/Softmax 层的实现
- 5.7 误差反向传播法的实现
- 5.8 小结
第6章 与学习相关的技巧
介绍了不同的参数更新方法,如SGD、Momentum、AdaGrad和Adam。讨论了权重初始值的选择对神经网络训练的影响。
- 6.1 参数的更新
- 6.2 权重的初始值
- 6.3 Batch Normalization
- 6.4 正则化
- 6.5 超参数的验证
- 6.6 小结
第7章 卷积神经网络
介绍了卷积神经网络(CNN)的基本概念,包括卷积层、池化层和全连接层。解释了CNN如何通过卷积和池化操作来提取图像特征。实现了一个简单的CNN,并用于图像分类任务。
- 7.1 整体结构
- 7.2 卷积层
- 7.3 池化层
- 7.4 卷积层和池化层的实现
- 7.5 CNN的实现
- 7.6 CNN的可视化
- 7.7 具有代表性的CNN
- 7.8 小结
第8章 深度学习
介绍了深度学习在自动驾驶、图像生成和强化学习等领域的应用。展示了如何将深度学习技术应用于实际问题和场景中。
- 8.1 加深网络
- 8.2 深度学习的小历史!
- 8.3 深度学习的高速化
- 8.4 深度学习的应用案例
- 8.5 深度学习的未来
- 8.6 小结
有需要
《深度学习入门:基于Python的理论和实现》
书籍PDF文档,可以微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费】