几个开发大模型应用常用的Python库

在这里插入图片描述

一、应用层开发

(1)FastAPI

FastAPI是构建API的优选。顾名思义,它快速、简单,并能与Pydantic完美集成,实现无缝数据验证。

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class Item(BaseModel):
    name: str
    price: float

@app.post("/items/")
async def create_item(item: Item):
    return {"name": item.name, "price": item.price}

(2)Jinja

Jinja是一个模板引擎,用于创建动态提示,它简单而强大,在管理复杂的提示逻辑方面起着关键作用。

from jinja2 import Template

template = Template("Hello {{ name }}!")
print(template.render(name="Raj"))

二、任务调度

有时候系统需要处理繁重的工作,Celery库可以帮助跨多个线程或机器分配任务。即使在要求苛刻的操作中,也能保持应用程序的响应速度。

from celery import Celery

app = Celery('tasks', broker='redis://localhost:6379/0')

@app.task
def add(x, y):
    return x + y

三、数据管理

数据是AI的基础,目前比较常用的两种数据库:PostgreSQL和MongoDB,分别对应着结构化和非结构化数据。

(1)连接

一般使用psycopg2管理Postgre SQL,使用PyMongo管理MongoDB。

import psycopg2

conn = psycopg2.connect(
    dbname="example", user="user", password="password", host="localhost")
cursor = conn.cursor()
cursor.execute("SELECT * FROM table")
rows = cursor.fetchall()
print(rows)

(2)简化数据操作

SQLAlchemy可以实现Python API管理数据库操作,相比SQL,这更干净,更高效。

from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

Base = declarative_base()

class User(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    name = Column(String)

engine = create_engine('sqlite:///example.db')
Base.metadata.create_all(engine)

四、API集成

将AI大模型集成到应用程序是最重要的步骤,实际上我们的应用就像是LLM的客户端,OpenAI、Anthropic和Google API 这些库都是AI应用集成常用的。

import openai

openai.api_key = "your-api-key"
response = openai.Completion.create(
    engine="text-davinci-003",
    prompt="Write a Python function to add two numbers.",
    max_tokens=100
)
print(response.choices[0].text.strip())

五、数据处理

(1)结构化

如果应用想从LLM中得到可靠的结构化输出,那么Instructor库是一个很好的选择。它可与各种模型配合使用,并且提供了高级数据验证功能。

from instructor import Instructor

instructor = Instructor(api_key="your-api-key")
response = instructor.get_response(prompt="What is the capital of France?", model="text-davinci-003")
print(response)

(2)LangChain和LlamaIndex:

这些框架简化了使用大型语言模型的工作。在一些场景下它们可以容简化提示管理和嵌入之类的复杂任务,使其易于入门。

from langchain.chains import LLMChain
from langchain.llms import OpenAI

llm = OpenAI(temperature=0.7)
chain = LLMChain(llm=llm)
response = chain.run("What is 2 + 2?")
print(response)

(3)向量数据库

许多AI应用程序,例如RAG,依赖于存储上下文,以便于后续进行检索。

往往会使用到向量数据库存储向量以及执行相似性搜索,例如:Pinecone、Weaviate和PGVector。

import pinecone

pinecone.init(api_key="your-api-key", environment="us-west1-gcp")
index = pinecone.Index("example-index")
index.upsert([("id1", [0.1, 0.2, 0.3])])
result = index.query([0.1, 0.2, 0.3], top_k=1)
print(result)

(4)DSPy

DSPy有助于自动优化提示,在微调AI响应时节省大量时间以及猜测。

from dsp import PromptOptimizer

optimizer = PromptOptimizer()
optimized_prompt = optimizer.optimize("Write a poem about space.")
print(optimized_prompt)

(5)PyMuPDF和PyPDF2

如果AI应用需要从PDF或文档中提取数据,这些库是靠谱的选择。

import fitz

doc = fitz.open("example.pdf")
for page in doc:
    print(page.get_text())

(6)Pydantic

人工智能项目经常需要处理混乱、不可预测的数据,Pydantic优雅地可以清理、组织数据。

from pydantic import BaseModel

class User(BaseModel):
    name: str
    age: int
    email: str

user = User(name="rose", age=30, email="rose@example.com")
print(user.dict())

六、跟踪观察

大模型应用的开发不是一触而就,开发只是第一步,在开发完之后还需要持续监控它的执行状况并对其优化。

Langsmith和Langsmith,这两个平台适合用于跟踪LLM调用情况,包括延迟、成本和输出等关键数据。

from langfuse import LangFuse

langfuse = LangFuse(api_key="your-api-key")
langfuse.log_interaction(prompt="What is 5 + 5?", response="10", latency=0.3)

以上这些Python库可以用于构建可靠、可扩展和高效的AI应用程序。


七、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值