一步步将DeepSeek R1微调成一个DeepDoctor(资深医生)

DeepSeek 颠覆了 AI 领域,挑战 OpenAI 的主导地位,推出了一系列先进的推理模型。最令人兴奋的是?这些模型完全免费,且没有任何使用限制,人人都可以访问。

在本教程中,我们将对 DeepSeek-R1-Distill-Llama-8B 模型进行微调,使用来自 Hugging Face 的医学思维链数据集进行训练。该精简版 DeepSeek-R1 模型是通过在 DeepSeek-R1 生成的数据上微调 Llama 3.1 8B 模型而创建的。它展示了与原始模型相似的推理能力。

一、什么是 DeepSeek R1?

DeepSeek-R1 和 DeepSeek-R1-Zero 在数学、编程和逻辑推理任务上与 OpenAI 的 o1 性能相当。但是 R1 和 R1-Zero 都是开源的

DeepSeek-R1-Zero

DeepSeek-R1-Zero 是首个完全通过大规模强化学习(RL,Reinforcement Learning)训练的开源模型,而不是通过监督微调(SFT,Supervised Fine-Tuning)作为初始步骤。这种方法使得模型能够独立探索思维链(CoT,Chain-of-Thought)推理,解决复杂问题,并迭代优化其输出。然而,这种方式也带来了一些挑战,如推理步骤重复、可读性差以及语言混杂,可能影响其清晰度和可用性。

DeepSeek-R1

DeepSeek-R1 的推出旨在克服 DeepSeek-R1-Zero 的局限性,通过在 RL 之前引入冷启动数据,为推理和非推理任务提供了更为坚实的基础。

这种多阶段训练使得该模型在数学、编程和推理基准测试中,能够达到与 OpenAI-o1 相媲美的领先水平,同时提升了输出的可读性和连贯性。

DeepSeek 蒸馏(Distillation)

DeepSeek 还推出了蒸馏模型。这些更小、更高效的模型同样展示了卓越的推理性能。

这些模型的参数范围从 1.5B 到 70B 不等,但保留了强大的推理能力,其中 DeepSeek-R1-Distill-Qwen-32B 在多个基准测试中超越了 OpenAI-o1-mini。

更小的模型继承了大模型的推理模式,展示了蒸馏过程的有效性。

在这里插入图片描述

二、逐步微调 DeepSeek R1

1. 环境设置

在本项目中,我们使用 Kaggle 作为云 IDE,因为它提供免费的 GPU 资源。我选择了两块 T4 GPU,但是看起来最终我只用了一块。如果你想用自己的电脑微调的话,那估计至少是要一块 16GB 显存的 RTX 3090 才行。

首先,启动一个新的 Kaggle notebook,并将你的 Hugging Face token 和 Weights & Biases token 添加为密钥。

设置好密钥之后,安装 unsloth Python 包。Unsloth 是一个开源框架,旨在使大型语言模型(LLM)的微调速度提高一倍,并且更具内存效率。

%%capture
!pip install unsloth
!pip install --force-reinstall --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git

登录 Hugging Face CLI,我们后续下载数据集和上传微调后的模型用得到。

from huggingface_hub import login
from kaggle_secrets import UserSecretsClient
user_secrets = UserSecretsClient()

hf_token = user_secrets.get_secret("HUGGINGFACE_TOKEN")
login(hf_token)

登录Weights & Biases (wandb),并创建一个新项目,以跟踪实验和微调进展。

import wandb

wb_token = user_secrets.get_secret("wandb")

wandb.login(key=wb_token)
run = wandb.init(
    project='Fine-tune-DeepSeek-R1-Distill-Llama-8B on Medical COT Dataset', 
    job_type="training", 
    anonymous="allow"
)

2. 加载模型和 tokenizer

在本项目中,我们将加载 Unsloth 版本的 DeepSeek-R1-Distill-Llama-8B。

https://huggingface.co/unsloth/DeepSeek-R1-Distill-Llama-8B

此外,为了优化内存使用和性能,我们将以 4-bit 量化的方式加载该模型。

from unsloth import FastLanguageModel

max_seq_length = 2048 
dtype = None 
load_in_4bit = True


model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "unsloth/DeepSeek-R1-Distill-Llama-8B",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    token = hf_token, 
)

3. 微调前的模型推理

为了为模型创建提示模板,我们将定义一个系统提示,并在其中包含问题和回答生成的占位符。该提示将引导模型逐步思考,并提供一个逻辑严谨、准确的回答。

prompt_style = """Below is an instruction that describes a task, paired with an input that provides further context. 
Write a response that appropriately completes the request. 
Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.

### Instruction:
You are a medical expert with advanced knowledge in clinical reasoning, diagnostics, and treatment planning. 
Please answer the following medical question. 

### Question:
{}

### Response:
<think>{}"""

在这个示例中,我们将向 prompt_style 提供一个医学问题,将其转换为 token,然后将这些 token 传递给模型以生成回答。

question = "A 61-year-old woman with a long history of involuntary urine loss during activities like coughing or sneezing but no leakage at night undergoes a gynecological exam and Q-tip test. Based on these findings, what would cystometry most likely reveal about her residual volume and detrusor contractions?"


FastLanguageModel.for_inference(model) 
inputs = tokenizer([prompt_style.format(question, "")], return_tensors="pt").to("cuda")

outputs = model.generate(
    input_ids=inputs.input_ids,
    attention_mask=inputs.attention_mask,
    max_new_tokens=1200,
    use_cache=True,
)
response = tokenizer.batch_decode(outputs)
print(response[0].split("### Response:")[1])

这个医学问题的大致含义是:

一名 61 岁的女性长期在咳嗽或打喷嚏等活动中不自觉地漏尿,但夜间没有漏尿,她接受了妇科检查和 Q-tip 测试。根据这些发现,膀胱测压最有可能揭示她的残余量和逼尿肌收缩情况?

即使在没有微调的情况下,我们的模型也成功地生成了思维链,并在给出最终答案之前进行了推理。推理过程被封装在 标签内。

那么,为什么我们仍然需要微调呢?尽管推理过程详细,但它显得冗长且不简洁。此外,最终答案以项目符号格式呈现,这与我们希望微调的数据集的结构和风格有所偏离。

4. 加载和处理数据集

我们将稍微调整提示模板,以处理数据集,方法是为复杂的思维链列添加第三个占位符。

train_prompt_style = """Below is an instruction that describes a task, paired with an input that provides further context. 
Write a response that appropriately completes the request. 
Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.

### Instruction:
You are a medical expert with advanced knowledge in clinical reasoning, diagnostics, and treatment planning. 
Please answer the following medical question. 

### Question:
{}

### Response:
<think>
{}
</think>
{}"""

编写一个 Python 函数,在数据集中创建一个 “text” 列,该列由训练提示模板组成。将占位符填充为问题、思维链和答案。

EOS_TOKEN = tokenizer.eos_token  # Must add EOS_TOKEN


def formatting_prompts_func(examples):
    inputs = examples["Question"]
    cots = examples["Complex_CoT"]
    outputs = examples["Response"]
    texts = []
    for input, cot, output in zip(inputs, cots, outputs):
        text = train_prompt_style.format(input, cot, output) + EOS_TOKEN
        texts.append(text)
    return {
        "text": texts,
    }

我们将从 Hugging Face Hub 加载 FreedomIntelligence/medical-o1-reasoning-SFT 数据集的前 500个 样本。

https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT?row=46

之后,我们将使用 formatting_prompts_func 函数对 “text” 列进行映射。

如我们所见,“text” 列包含了系统提示、指令、思维链和答案。

5. 设置模型

通过使用目标模块,我们将通过向模型中添加低秩适配器(low-rank adopter)来设置模型。

model = FastLanguageModel.get_peft_model(
    model,
    r=16,  
    target_modules=[
        "q_proj",
        "k_proj",
        "v_proj",
        "o_proj",
        "gate_proj",
        "up_proj",
        "down_proj",
    ],
    lora_alpha=16,
    lora_dropout=0,  
    bias="none",  
    use_gradient_checkpointing="unsloth",  # True or "unsloth" for very long context
    random_state=3407,
    use_rslora=False,  
    loftq_config=None,
)

接下来,我们将设置训练参数和训练器,通过提供模型、tokenizer、数据集以及其他重要的训练参数,来优化我们的微调过程。

from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported

trainer = SFTTrainer(
    model=model,
    tokenizer=tokenizer,
    train_dataset=dataset,
    dataset_text_field="text",
    max_seq_length=max_seq_length,
    dataset_num_proc=2,
    args=TrainingArguments(
        per_device_train_batch_size=2,
        gradient_accumulation_steps=4,
        # Use num_train_epochs = 1, warmup_ratio for full training runs!
        warmup_steps=5,
        max_steps=60,
        learning_rate=2e-4,
        fp16=not is_bfloat16_supported(),
        bf16=is_bfloat16_supported(),
        logging_steps=10,
        optim="adamw_8bit",
        weight_decay=0.01,
        lr_scheduler_type="linear",
        seed=3407,
        output_dir="outputs",
    ),
)

6. 训练模型

trainer_stats = trainer.train()

训练过程花费了 22 分钟完成。训练损失逐渐降低,这表明模型性能有所提升,这是一个积极的信号。

通过登录 Weights & Biases 网站并查看完整的模型评估报告。

7. 微调后的模型推理

为了对比结果,我们将向微调后的模型提出与之前相同的问题,看看有什么变化。

question = "A 61-year-old woman with a long history of involuntary urine loss during activities like coughing or sneezing but no leakage at night undergoes a gynecological exam and Q-tip test. Based on these findings, what would cystometry most likely reveal about her residual volume and detrusor contractions?"


FastLanguageModel.for_inference(model)  # Unsloth has 2x faster inference!
inputs = tokenizer([prompt_style.format(question, "")], return_tensors="pt").to("cuda")

outputs = model.generate(
    input_ids=inputs.input_ids,
    attention_mask=inputs.attention_mask,
    max_new_tokens=1200,
    use_cache=True,
)
response = tokenizer.batch_decode(outputs)
print(response[0].split("### Response:")[1])

结果明显更好且更准确。思维链条简洁明了,答案直接且只用了一段话。微调成功。

8. 本地保存模型

现在,让我们将适配器、完整模型和 tokenizer 保存在本地,以便在其他项目中使用。

new_model_local = "DeepSeek-R1-Medical-COT"
model.save_pretrained(new_model_local) 
tokenizer.save_pretrained(new_model_local)

model.save_pretrained_merged(new_model_local, tokenizer, save_method = "merged_16bit",)

9. 将模型推送到 Hugging Face Hub

我们还将把适配器、tokenizer 和模型推送到 Hugging Face Hub,以便 AI 社区能够通过将其集成到他们的系统中,充分利用这个模型。

new_model_online = "realyinchen/DeepSeek-R1-Medical-COT"
model.push_to_hub(new_model_online)
tokenizer.push_to_hub(new_model_online)

model.push_to_hub_merged(new_model_online, tokenizer, save_method = "merged_16bit")

三、总结

AI 领域正在快速变化。开源社区正在崛起,挑战过去三年主导 AI 领域的专有模型。

开源的 LLM 正在变得更加优秀、更快速、更高效,使得在较低的计算和内存资源下微调它们变得比以往更加容易。

在本教程中,我们探讨了 DeepSeek R1 推理模型,并学习了如何对其精简版进行微调,以应用于医学问答任务。微调后的推理模型不仅提升了性能,还使其能够应用于医学、急救服务和医疗等关键领域。

为了应对 DeepSeek R1 的发布,OpenAI 推出了两个强大的工具:一个更先进的推理模型:o3,以及 Operator AI Agent,依托全新的计算机使用 Agent(CUA,Computer Use Agent)模型,能够自主浏览网站并执行任务。

源代码:

https://www.kaggle.com/code/realyinchen/deepseek-r1-medical-cot


四、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

在这里插入图片描述

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

### 如何对DeepSeek模型进行微调 对于特定领域或任务优化大型语言模型LLM),微调是一种有效的方法。当涉及到像DeepSeek这样的模型时,其过程与其他Hugging Face上的预训练模型相似[^1]。 #### 准备环境与安装依赖库 为了能够顺利地对DeepSeek模型实施微调操作,首先需要准备合适的开发环境并安装必要的Python包: ```bash pip install transformers datasets torch ``` 这些工具提供了加载预训练模型、处理数据集以及执行训练循环所需的功能。 #### 加载预训练DeepSeek模型 通过`transformers`库可以直接访问由社区分享的各种预训练权重文件。假设要使用的具体版本已经发布,则可以通过如下方式获取它: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "deepseek-model-name" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) # 假设是一个二分类问题 ``` 此处需替换`deepseek-model-name`为实际发布的DeepSeek模型名称,并设置好相应的标签数量。 #### 数据预处理 针对目标任务的数据集应当被转换适合输入给定架构的形式。通常情况下,这意味着将原始文本转化为token ID序列,并可能附加其他特征如attention masks等辅助信息: ```python def preprocess_function(examples): return tokenizer(examples["text"], truncation=True) encoded_dataset = dataset.map(preprocess_function, batched=True) ``` 这段代码展示了如何定义一个简单的预处理器函数来完上述工作;注意这里的`dataset`变量应指向已加载的目标数据集合实例。 #### 设置训练参数及配置 在正式开始之前还需要指定一些重要的超参数选项,比如学习率、批次大小等等。此外也可以考虑采用混合精度加速计算效率或是启用梯度累积减少显存占用等问题: ```python training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, weight_decay=0.01, save_total_limit=3, num_train_epochs=3, fp16=True, # 如果硬件支持的话开启半精度浮点数运算 gradient_accumulation_steps=4 # 当单次batch size较大而GPU内存不足时可适当调整此值 ) ``` 以上仅作为示例展示了一部分常用的设定项,请根据实际情况灵活调整各项数值直至找到最优解为止。 #### 执行微调流程 最后一步就是创建Trainer对象并将前面几步所构建好的组件组合起来启动整个训练进程了: ```python from transformers import Trainer trainer = Trainer( model=model, args=training_args, train_dataset=encoded_dataset['train'], eval_dataset=encoded_dataset['validation'] ) trainer.train() ``` 一旦程序运行结束就会得到经过微调后的DeepSeek模型副本保存于本地磁盘之中供后续部署应用之用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值