矩阵乘法的几何意义

本文探讨了矩阵乘法在线性代数中的几何解释,通过矩阵列向量的线性组合来展示如何通过矩阵变换坐标。举例说明,旋转矩阵通过改变基向量实现了空间中的旋转效果,例如将与x轴夹角为θ的向量旋转到新的位置。
摘要由CSDN通过智能技术生成

矩阵乘法的几何意义:

本文是学习马同学线性代数的一点笔记!

给向量空间加上坐标系——自然基。(一般情况下,向量空间默认选择自然基作为基)

                                                                                       \large $$i = \left(\begin{matrix}1 \\ 0\end{matrix}\right) , \qquad j = \left(\begin{matrix}0 \\ 1\end{matrix}\right)$$

令:

                                                                                                  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值