前言
mojo是人工智能模型的新语言,到底性能如何,我们将在这里一探究竟。
一、拉取项目
获取项目地址。
git命令拉取。
git clone https://github.com/tairov/llama2.mojo.git
二、镜像制作
项目中,有一个Dockerfile用于制作镜像。Dockerfile 需要修改。
FROM ubuntu:20.04
ARG DEFAUL_TZ=Asia/Shanghai
ENV DEFAULT_TZ=$DEFAULT_TZ
ARG MODULAR_HOME=/home/user/.modular
ENV MODULAR_HOME=$MODULAR_HOME
RUN apt-get update \
&& DEBIAN_FRONTEND=noninteractive $DEFAULT_TZ apt-get install -y \
python3.8-venv \
tzdata \
vim \
sudo \
curl \
python3 \
pip \
wget \
&& python3 -m pip install \
jupyterlab \
ipykernel \
matplotlib \
ipywidgets \
gradio
# RUN curl -fsSL https://repo.anaconda.com/miniconda/Miniconda3-py38_23.5.2-0-Linux-x86_64.sh > /tmp/miniconda.sh \
# && chmod +x /tmp/miniconda.sh \
# && /tmp/miniconda.sh -b -p /opt/conda
ARG AUTH_KEY=mut_1ab442b0938f435388ecc1851d9b6286
ENV AUTH_KEY=$AUTH_KEY
RUN curl https://get.modular.com | MODULAR_AUTH=$AUTH_KEY sh - \
&& modular install mojo
RUN useradd -m -u 1000 user
RUN chown -R user $MODULAR_HOME
ENV PATH="$PATH:/opt/conda/bin:$MODULAR_HOME/pkg/packages.modular.com_mojo/bin"
# RUN conda init
RUN pip install gradio
USER user
WORKDIR $HOME/app
COPY --chown=user . $HOME/app
RUN wget -c https://huggingface.co/karpathy/tinyllamas/resolve/main/stories15M.bin
RUN wget -c https://huggingface.co/karpathy/tinyllamas/resolve/main/stories42M.bin
RUN wget -c https://huggingface.co/karpathy/tinyllamas/resolve/main/stories110M.bin
#以下两个命令可以选择,可以是网页端的形式,可以是命令行的形式
# CMD ["mojo", "llama2.mojo"]
CMD ["python3", "gradio_app.py"]
docker build -t lincaigui/llama2-mojo .
推送至docker hub。
docker push lincaigui/llama2-mojo:latest
三、测试项目
制作镜像的时候,下面设置是没有GUI的。
docker run -it lincaigui/llama2-mojo:latest
下面这个有GUI,但是需要把Dockerfile最后一个命令反注释掉。
# uncomment the last line in Dockerfile CMD ["python", "gradio_app.py"]
docker run -it -p 0.0.0.0:7860:7860 lincaigui/llama2-mojo:latest
可以看到使用网页版的llama2推理的速度是112 tok/s,还是可以了。
总结
我们没有进行Python环境,命令行,C环境对比。从结果来看mojo推理大模型确实很厉害,足以支撑应用,我已经开始期待用mojo编写大模型算法。如果你想测试,可以直接拉取镜像lincaigui/llama2-mojo:latest。