深度学习之基于卷积神经网络实现超大Mnist数据集识别

在以往的手写数字识别中,数据集一共是70000张图片,模型准确率可以达到99%以上的准确率。而本次实验的手写数字数据集中有120000张图片,而且数据集的预处理方式也是之前没有遇到过的。最终在验证集上的模型准确率达到了99.1%。在模型训练过程中,加入了上一篇文章中提到的早停策略以及模型保存策略。

1.导入库

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import os,PIL,pathlib,warnings,pickle,png

warnings.filterwarnings("ignore")#忽略警告信息

# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

2.数据处理

原始数据如下所示:
在这里插入图片描述
这是经过序列化的图片数据,因此需要我们自己反序列化,读入内存中

#将原数据集反序列化,读入到内存中
def unpickle(file):
    with open(file,'rb') as fo:
        dict = pickle.load(fo,encoding='bytes')
    return dict
Qmnist = unpickle("E:/tmp/.keras/datasets/QMnist/MNIST-120k")
data = Qmnist['data']
labels = Qmnist['labels']

读入内存中的数据,需要转化为图片格式,按照它所属的标签,存放到不同的文件夹中。

num = data.shape[0]
#如果不存在文件夹,就新建文件夹
if not os.path.exists('E:/tmp/.keras/datasets/QMnist/dataset'):
    os.mkdir('E:/tmp/.keras/datasets/QMnist/dataset')
for i in range(0,num):
    x = data[i]
    y = str(labels[i])
    name = str(i)
	#二级文件夹,存放0-9不同种类的图片
    if not os.path.exists('E:/tmp/.keras/datasets/QMnist/dataset/{}'.format(y)):
        os.mkdir('E:/tmp/.keras/datasets/QMnist/dataset/{}'.format(y))
#存放图片    png.from_array(x,mode="L").save("E:/tmp/.keras/datasets/QMnist/dataset/{}/{}.png".format(y,name))

最终处理出来的图片数据如下所示:
在这里插入图片描述
其中[4]中的部分图片如下所示:
在这里插入图片描述

3.划分训练集、测试集、验证集

这一部分属于老生常谈的问题了~

data_dir = "E:/tmp/.keras/datasets/QMnist/dataset"
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*.png')))
# print(image_count)#120000

all_images_paths = list(data_dir.glob('*'))
all_images_paths = [str(path) for path in all_images_paths]
all_label_names = [path.split("\\")[5].split(".")[0] for path in all_images_paths]
# print(all_label_names)
height = 75
width = 75
batch_size = 8
epochs = 50

train_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(
    rescale=1./255,
    validation_split=0.2
)
train_ds = train_data_gen.flow_from_directory(
    directory=data_dir,
    target_size=(height,width),
    batch_size=batch_size,
    shuffle=True,
    class_mode='categorical',
    subset='training',
    seed=42
)

validation_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(
    rescale=1./255,
    validation_split=0.2
)
val_ds = validation_data_gen.flow_from_directory(
    directory=data_dir,
    target_size=(height,width),
    batch_size=batch_size,
    shuffle=True,
    class_mode='categorical',
    subset='validation'
)

test_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(
    rescale=1./255,
    validation_split=0.1
)
test_ds = test_data_gen.flow_from_directory(
    directory=data_dir,
    target_size=(height,width),
    batch_size=batch_size,
    shuffle=True,
    class_mode='categorical',
    subset='validation'
)

经过处理之后,查看图片:

plt.figure(figsize=(15, 10))  # 图形的宽为15高为10

for images, labels in train_ds:
    for i in range(40):
        ax = plt.subplot(5, 8, i + 1)
        plt.imshow(images[i])
        plt.title(all_label_names[np.argmax(labels[i])])
        plt.axis("off")
    break
plt.show()

在这里插入图片描述

4.网络搭建

一开始采用的是VGG16模型,但是跑的实在是太慢了,而且不知道哪方面出了问题,准确率很低。

model = tf.keras.Sequential([
    tf.keras.layers.Conv2D(filters=32,kernel_size=(3,3),padding="same",activation="relu",input_shape=[64, 64, 3]),
    tf.keras.layers.MaxPooling2D((2,2)),
    tf.keras.layers.Conv2D(filters=64,kernel_size=(3,3),padding="same",activation="relu"),
    tf.keras.layers.MaxPooling2D((2,2)),
    tf.keras.layers.Conv2D(filters=64,kernel_size=(3,3),padding="same",activation="relu"),
    tf.keras.layers.MaxPooling2D((2,2)),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(64, activation="relu"),
    tf.keras.layers.Dense(10, activation="softmax")
])

早停策略以及模型保存

Earlystop = tf.keras.callbacks.EarlyStopping(
    monitor='loss',
    mode='min',
    restore_best_weights=True
)
Checkpoint = tf.keras.callbacks.ModelCheckpoint(
    filepath='E:/Users/yqx/PycharmProjects/Qmnist/model.h5',
    save_best_only=True,
    monitor='val_accuracy',
    mode='max'
)

网络编译&&训练

model.compile(
    optimizer='adam',
    loss='categorical_crossentropy',
    metrics=['accuracy'])
history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs,
    callbacks=[Earlystop,Checkpoint]
)

Accuracy以及Loss图如下所示:
在这里插入图片描述
epochs设置的为50,但是在第7个epoch训练结束后,就停止了,实现了早停策略。

5.模型测试&&混淆矩阵

模型加载:

model = tf.keras.models.load_model('cloud/model.h5')

对测试集进行模型测试:

model.evaluate(test_ds)

最终结果如下所示:

1500/1500 [==============================] - 9s 6ms/step - loss: 0.0469 - accuracy: 0.9912
[0.046884261071681976, 0.9911637306213379]

绘制混淆矩阵:

from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
import seaborn as sns

pred = model.predict(test_ds).argmax(axis=1)
labels = list(train_ds.class_indices.keys())

cm = confusion_matrix(test_data.classes, pred)
plt.figure(figsize=(15,10))
sns.heatmap(cm, annot=True, fmt='g', xticklabels=labels, yticklabels=labels, cmap="BuPu")
plt.title('Confusion Matrix')
plt.show()

在这里插入图片描述
努力加油a啊

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: 基于Python的卷神经网络可以非常有效地识别MNIST数据集。MNIST是一个手写数字识别的经典数据集,包含了60000个训练样本和10000个测试样本,每个样本是一个28x28像素的灰度图像。 首先,我们需要使用Python的深度学习库Keras来构建卷神经网络模型。卷神经网络的核心是卷层和池化层,这些层能够提取图像的特征。我们可以使用Conv2D函数来添加卷层,它将输入的图像进行卷计算。然后,我们可以使用MaxPooling2D函数来添加池化层,它可以对卷层的输出进行下采样。 其次,我们需要将MNIST数据集进行预处理。我们可以使用Keras提供的工具函数将图像数据规范化到0到1之间,并将标签进行独热编码。这样可以更好地适应卷神经网络的输入和输出。 接下来,我们可以定义我们的卷神经网络模型。一个简单的卷神经网络可以包含几个卷层和池化层,然后是一个或多个全连接层。我们可以使用Keras的Sequential模型来构建这个模型,并逐层加入卷层和池化层。 然后,我们需要对模型进行编译和训练。我们可以使用compile函数对模型进行配置,设置损失函数、优化器和评估指标。对于MNIST数据集的分类问题,我们可以选择交叉熵作为损失函数,并使用Adam优化器进行优化。然后,我们可以使用fit函数将模型训练在训练集上进行训练。 最后,我们可以使用训练好的模型对测试集进行预测,并评估模型的准确率。我们可以使用evaluate函数计算模型在测试集上的损失和准确率。 总结来说,通过使用Python的卷神经网络库Keras,我们可以很容易地构建一个能够识别MNIST数据集的卷神经网络模型。该模型可以对手写数字图像进行特征提取和分类,并能够给出准确的识别结果。 ### 回答2: 基于Python的卷神经网络(Convolutional Neural Network, CNN)可以用来识别MNIST数据集。MNIST是一个手写数字的图像数据集,包含训练集和测试集,每个图像是28x28的灰度图像。 要使用CNN来识别MNIST数据集,首先需要导入必要的Python库,如TensorFlow和Keras。然后,定义CNN的模型架构。模型可以包含一些卷层、池化层和全连接层,以及一些激活函数和正则化技术。 接下来,将训练集输入到CNN模型进行训练。训练数据集包含大量有标签的图像和对应的数字标签。通过迭代训练数据集,目标是调整CNN模型的参数,使其能够准确地预测出输入图像的数字标签。 训练完成后,可以使用测试集来评估CNN模型的性能。测试集与训练集是相互独立的,其中包含一些未曾训练过的图像和相应的标签。通过使用CNN模型来预测测试集图像的标签,并将预测结果与实际标签进行比较,可以计算出模型的准确率。 对于MNIST数据集的识别,使用CNN相比传统的机器学习算法有许多优势。CNN可以自动提取特征,无需手动设计特征。此外,CNN可以有效地处理图像数据的空间关系和局部模式,能够更好地捕捉图像中的结构信息。这使得CNN在图像识别任务中具有较高的准确率。 总之,基于Python的卷神经网络可以很好地识别MNIST数据集。通过构建一个CNN模型,从训练数据中学习到的参数可以用来预测测试数据中的图像标签,并通过比较预测结果和实际标签来评估模型的性能。 ### 回答3: 卷神经网络(CNN)是一种在计算机视觉领域中广泛应用的深度学习模型,其中包括卷层、池化层和全连接层等不同层级。 在使用Python构建CNN来识别MNIST数据集时,我们需要先从MNSIT数据集中加载图像和标签。接下来,我们可以使用Python的图像处理库将图像转换为适当的格式,以供CNN模型使用。 在卷层中,我们可以使用Python的数据处理和图像处理库(如NumPy和OpenCV)来实现操作。通过设置合适的滤波器和步幅,我们可以从图像中提取特征。卷层的输出将通过使用ReLU等激活函数来进行非线性变换。 接下来是池化层,它有助于减小特征图的大小并减少计算量。在这一步骤中,我们可以使用Python的库(如NumPy)来实现最大池化或平均池化操作。 在完成卷和池化操作后,我们将使用全连接层,将具有多个特征图的输出连接成一个向量。然后,我们可以使用Python的深度学习框架(如TensorFlow或Keras),通过神经网络的反向传播来训练CNN模型。 在训练过程中,我们可以使用Python的库(如NumPy)来进行损失函数的计算和梯度下降等操作。通过不断迭代优化CNN的权重和偏差,我们可以逐步提高模型在MNIST数据集上的准确性。 最后,我们可以使用训练好的CNN模型对新的MNIST图像进行分类预测。通过输入图像到CNN模型中,我们可以获取每个类别的概率分布,然后选择概率最高的类别标签作为预测结果。 总之,基于Python的卷神经网络(CNN)的步骤是:加载MNIST数据集、进行卷层、池化层和全连接层操作、使用深度学习框架训练模型,并使用训练好的模型进行分类预测。这样的CNN模型可以在MNIST数据集上实现高精度的数字识别

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

starlet_kiss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值