机器翻译——NLP实验

一.什么是机器翻译

机器翻译(Machine Translation, MT)是一种利用计算机程序自动将一种自然语言(源语言)的文本翻译成另一种自然语言(目标语言)的过程。它的作用在于帮助人们跨越语言障碍,快速和高效地进行文本翻译。以下是机器翻译的一些关键特点和作用:

  1. 自动化翻译: 机器翻译系统能够自动处理大量文本,无需人工逐句翻译,节省了大量时间和人力成本。
  2. 跨语言沟通: 它使得不同语言使用者可以更容易地交流和理解彼此的信息,有助于国际间的商务、学术、文化交流。
  3. 实时性: 在某些情况下,机器翻译能够提供即时翻译服务,例如在线聊天、视频会议等,大大提高了信息传递的效率。
  4. 大数据处理: 对于大量重复性高的文本,例如新闻报道、科技文档等,机器翻译可以快速且一致地完成翻译任务。
  5. 辅助翻译工具: 对于人工翻译人员来说,机器翻译系统可以作为辅助工具,提供翻译建议和参考,加快翻译的速度和准确性。

二.机器翻译的原理

1.编码器—解码器

编码器:作用是把一个不定长的输入序列变换成一个定长的背景变量𝑐,并在该背景变量中编码输入序列信息。常用的编码器是循环神经网络。让我们考虑批量大小为1的时序数据样本。假设输入序列是𝑥1,…,𝑥𝑇,例如𝑥𝑖是输入句子中的第𝑖个词。在时间步𝑡,循环神经网络将输入𝑥𝑡的特征向量𝑥𝑡和上个时间步的隐藏状态ℎ𝑡−1变换为当前时间步的隐藏状态ℎ𝑡。我们可以用函数𝑓表达循环神经网络隐藏层的变换:

接下来,编码器通过自定义函数𝑞𝑞将各个时间步的隐藏状态变换为背景变量:

当选择𝑞(ℎ1,…,ℎ𝑇)=ℎ𝑇时,背景变量是输入序列最终时间步的隐藏状态ℎ𝑇。以上描述的编码器是一个单向的循环神经网络,每个时间步的隐藏状态只取决于该时间步及之前的输入子序列。我们也可以使用双向循环神经网络构造编码器。在这种情况下,编码器每个时间步的隐藏状态同时取决于该时间步之前和之后的子序列(包括当前时间步的输入),并编码了整个序列的信息。

解码器:刚刚已经介绍,编码器输出的背景变量𝑐𝑐编码了整个输入序列𝑥1,…,𝑥𝑇的信息。给定训练样本中的输出序列𝑦1,𝑦2,…,𝑦𝑇′,对每个时间步𝑡′(符号与输入序列或编码器的时间步𝑡有区别),解码器输出𝑦𝑡′𝑦𝑡′的条件概率将基于之前的输出序列𝑦1,…,𝑦𝑡′−1和背景变量𝑐。

为此,我们可以使用另一个循环神经网络作为解码器。在输出序列的时间步𝑡′𝑡′,解码器将上一时间步的输出𝑦𝑡′−1𝑦𝑡′−1以及背景变量𝑐𝑐作为输入,并将它们与上一时间步的隐藏状态𝑠𝑡′−1𝑠𝑡′−1变换为当前时间步的隐藏状态𝑠𝑡′𝑠𝑡′。因此,我们可以用函数𝑔𝑔表达解码器隐藏层的变换:

有了解码器的隐藏状态后,我们可以使用自定义的输出层和softmax运算来计算𝑃(𝑦𝑡′∣𝑦1,…,𝑦𝑡′−1,𝑐),例如,基于当前时间步的解码器隐藏状态 𝑠𝑡′、上一时间步的输出𝑦𝑡′−1以及背景变量𝑐来计算当前时间步输出𝑦𝑡′的概率分布。

2.注意力机制

   人在观察事物时会有选择性的关注较为重要的信息,称其为注意力。通过持续关注这一关键位置以获得更多的信息,而忽略其他的无用信息,这种视觉注意力机制大大提高了我们处理信息的效率和准确性。深度学习中的注意力机制和人类视觉的注意力机制类似,就是在更多信息中把注意力集中放在重要的点上,选出关键信息,而忽略其他不重要的信息。

   注意力机制(Attention Mechanism)是机器学习中的一种数据处理方法,广泛应用在自然语言处理、图像识别以及语音识别等各种不同类型的机器学习任务中。注意力机制对不同信息的关注程度(重要程度)由权值来体现,注意力机制可以视为查询矩阵(Query)、键(key)以及加权平均值构成了多层感知机。

三.实验步骤

1.读取和预处理数据

 我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。

!tar -xf d2lzh_pytorch.tar
#导入一些必要的库
import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

import sys
# sys.path.append("..") 
import d2lzh_pytorch as d2l
#判断运行设备
PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

#print(torch.__version__, device)

  接着定义两个辅助函数对后面读取的数据进行预处理。

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []  # 初始化输入和输出的token列表和序列列表
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()  # 读取文件中的所有行
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')  # 按制表符分隔输入和输出序列
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')  # 将每个序列按空格分隔成token
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)  # 处理输入序列
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)  # 处理输出序列
    in_vocab, in_data = build_data(in_tokens, in_seqs)  # 构建输入词汇表和数据
    out_vocab, out_data = build_data(out_tokens, out_seqs)  # 构建输出词汇表和数据
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)  # 返回输入输出词汇表和数据集

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

#将序列的最大长度设成7,然后查看读取到的第一个样本
max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

   结果为: 

2.含注意力机制的编码器—解码器

在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。正如我们在6.5节(循环神经网络的简洁实现)中提到的,PyTorch的nn.GRU实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        # 定义嵌入层,将词汇表大小映射到嵌入维度大小
        self.embedding = nn.Embedding(vocab_size, embed_size)
        # 定义GRU层,输入是嵌入维度大小,隐藏状态是num_hiddens,层数是num_layers
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2)  # (seq_len, batch, input_size)
        return self.rnn(embedding, state)

    def begin_state(self):
        # 初始化RNN的隐藏状态,这里返回None表示默认初始化为0
        return None

下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

#创建一个批量大小为4、时间步数为7的小批量序列输入
#设门控循环单元的隐藏层个数为2,隐藏单元个数为16
encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)

  结果为:

在注意力机制中定义的函数:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。其中函数𝑎𝑎定义里向量𝑣𝑣的长度是一个超参数,即attention_size

def attention_model(input_size, attention_size):
    # 使用 nn.Sequential 定义一个顺序容器
    model = nn.Sequential(
        # 第一个线性层,将输入大小(input_size)映射到注意力大小(attention_size),不使用偏置项(bias=False)
        nn.Linear(input_size, attention_size, bias=False),
        # 使用 Tanh 激活函数
        nn.Tanh(),
        # 第二个线性层,将注意力大小(attention_size)映射到单个标量输出,仍然不使用偏置项(bias=False)
        nn.Linear(attention_size, 1, bias=False)
    )
    return model

注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态 dec_state 的形状从 (批量大小, 隐藏单元个数) 扩展为 (1, 批量大小, 隐藏单元个数)
    # 然后广播(复制)到与编码器隐藏状态 enc_states 相同的形状 (时间步数, 批量大小, 隐藏单元个数)
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    
    # 将扩展后的解码器隐藏状态 dec_states 与编码器隐藏状态 enc_states 在最后一个维度(隐藏单元个数维度)上连结
    # 结果形状为 (时间步数, 批量大小, 2 * 隐藏单元个数)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    
    # 通过注意力模型 model 将拼接后的 enc_and_dec_states 传入得到注意力得分 e
    # e 的形状为 (时间步数, 批量大小, 1)
    e = model(enc_and_dec_states)
    
    # 对注意力得分 e 在时间步维度(dim=0)上进行 softmax 运算,得到注意力权重 alpha
    # alpha 的形状仍为 (时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)
    
    # 使用注意力权重 alpha 对编码器隐藏状态 enc_states 做加权求和,得到背景向量 context vector
    # 加权求和操作是在时间步维度(dim=0)上进行的,得到的结果形状为 (批量大小, 隐藏单元个数)
    return (alpha * enc_states).sum(dim=0)

在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。

#编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8
seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10) 
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
#注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数
attention_forward(model, enc_states, dec_state).shape

 结果:

 

含注意力机制的解码器:我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

3.训练模型

 我们先实现batch_loss函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。我们在这里也使用掩码变量避免填充项对损失函数计算的影响。

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

  在训练函数中,我们需要同时迭代编码器和解码器的模型参数。

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    # 初始化编码器和解码器的优化器
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    # 定义损失函数为交叉熵损失
    loss = nn.CrossEntropyLoss(reduction='none')
    
    # 创建数据加载器
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    
    for epoch in range(num_epochs):
        l_sum = 0.0
        for X, Y in data_iter:
            # 梯度清零
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            
            # 计算批量损失
            l = batch_loss(encoder, decoder, X, Y, loss)
            
            # 反向传播
            l.backward()
            
            # 更新参数
            enc_optimizer.step()
            dec_optimizer.step()
            
            # 累加损失
            l_sum += l.item()
        
        # 每10个epoch输出一次损失
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

   接下来,创建模型实例并设置超参数。然后,我们就可以训练模型了。

#模型训练,进行编码,解码
embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

  结果:

4.预测不定长的序列

  使用贪婪搜索生成解码器在每个时间步的输出。

def translate(encoder, decoder, input_seq, max_seq_len):
    # 将输入序列拆分为单词列表
    in_tokens = input_seq.split(' ')
    # 添加终止符EOS,并用填充符PAD补足到最大序列长度
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    
    # 将输入序列转换为张量 (batch size = 1)
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) 
    
    # 初始化编码器状态
    enc_state = encoder.begin_state()
    
    # 获取编码器输出和状态
    enc_output, enc_state = encoder(enc_input, enc_state)
    
    # 初始化解码器输入为起始符BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    
    # 使用编码器状态初始化解码器状态
    dec_state = decoder.begin_state(enc_state)
    
    output_tokens = []  # 存储翻译结果的列表
    
    # 开始解码
    for _ in range(max_seq_len):
        # 获取解码器输出和更新后的状态
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        
        # 选择概率最大的单词作为预测结果
        pred = dec_output.argmax(dim=1)
        
        # 将预测结果转换为对应的单词
        pred_token = out_vocab.itos[int(pred.item())]
        
        # 如果预测到终止符EOS,结束解码
        if pred_token == EOS:
            break
        else:
            # 否则,将预测的单词添加到结果列表中,并将其作为下一个时间步的输入
            output_tokens.append(pred_token)
            dec_input = pred
    
    return output_tokens  # 返回翻译结果

 简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。

#测试
input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

 结果:

 

5.评价翻译结果

 评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)[1]。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。具体来说,设词数为𝑛的子序列的精度为𝑝𝑛。它是预测序列与标签序列匹配词数为𝑛𝑛的子序列的数量与预测序列中词数为𝑛的子序列的数量之比。BLEU的定义为

其中𝑘是我们希望匹配的子序列的最大词数。可以看到当预测序列和标签序列完全一致时,BLEU为1。因为匹配较长子序列比匹配较短子序列更难,BLEU对匹配较长子序列的精度赋予了更大权重。模型预测较短序列往往会得到较高𝑝𝑛值。因此,上式中连乘项前面的系数是为了惩罚较短的输出而设的。

下面来实现BLEU的计算。

def bleu(pred_tokens, label_tokens, k):
    # 预测序列和标签序列的长度
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    
    # 初始化BLEU评分,考虑长度惩罚项
    score = math.exp(min(0, 1 - len_label / len_pred))
    
    # 遍历每个n-gram级别
    for n in range(1, k + 1):
        num_matches = 0  # 匹配的n-grams数量
        label_subs = collections.defaultdict(int)  # 存储标签中的n-grams
        
        # 构建标签序列的n-grams计数字典
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        
        # 统计预测序列中匹配的n-grams数量
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        
        # 更新BLEU评分
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    
    return score  # 返回最终的BLEU评分

  接下来,定义一个辅助打印函数。

#定义辅助函数
def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

  预测正确则分数为1。

#测试
score('ils regardent .', 'they are watching .', k=2)

 结果:

 

#测试
score('ils sont canadienne .', 'they are canadian .', k=2)

 结果:

 

四.试着使用更大的翻译数据集来训练模型

例如使用 WMT [2] 和 Tatoeba Project [3]。

本次实验用的是一个法语翻译为英语的小的语料库,在网址http://www.manythings.org/anki/下载French - English相关文件,我们可以下载英语到法语的转换,进行一个逆测试.下载的fra.txt,文件每一行除了英语和对应法语外还有相关的说明,在不同的情况下有同一样的英语对应多种法语.
为了简化,我在fra.txt取出部分数据,放在fr-en-big.txt中,这个数据集比fr-en-small大,用此数据集来训练模型.我发现数据集变大,损失函数变大,达到收敛的轮数需要的更多,效果比小的数据集更好.

fr-en-big数据集内部情况:是英语到法语的转换。

 以下给出一些不同与以上小数据集的代码: 

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []  # 初始化输入和输出的token列表和序列列表
    with io.open('fr-en-big.txt') as f:
        lines = f.readlines()  # 读取文件中的所有行
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')  # 按制表符分隔输入和输出序列
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')  # 将每个序列按空格分隔成token
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)  # 处理输入序列
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)  # 处理输出序列
    in_vocab, in_data = build_data(in_tokens, in_seqs)  # 构建输入词汇表和数据
    out_vocab, out_data = build_data(out_tokens, out_seqs)  # 构建输出词汇表和数据
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)  # 返回输入输出词汇表和数据集
#将序列的最大长度设成12,然后查看读取到的第一个样本
max_seq_len = 12
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

 结果:

#创建一个批量大小为4、时间步数为7的小批量序列输入
#设门控循环单元的隐藏层个数为2,隐藏单元个数为16
encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)

 结果: 

#编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8
seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10) 
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
#注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数
attention_forward(model, enc_states, dec_state).shape

  结果:

 

#模型训练,进行编码,解码
embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 30
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

 训练结果: 

训练30轮,使用大一点的数据集收敛情况较差.训练更多次数,也只能收敛到0.3左右。

#测试,这是英语到法语的转换,与上面小数据集法语到英语转换相反
input_seq = 'Fortunately, no one was injured.'
translate(encoder, decoder, input_seq, max_seq_len)

 结果:

 真实结果为Heureusement, personne ne fut blessé.可知训练结果还可以. 

五.参考文献

[1] Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 311-318). Association for Computational Linguistics.

[2] WMT. Translation Task - ACL 2014 Ninth Workshop on Statistical Machine Translation

[3] Tatoeba Project. Tab-delimited Bilingual Sentence Pairs from the Tatoeba Project (Good for Anki and Similar Flashcard Applications)

  • 28
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值