Numpy —— 花式索引,整数索引和布尔索引

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/starter_____/article/details/79174263

花式索引

花式索引指的是利用整数数组进行索引
花式索引跟切片不一样,它总是将数据复制到新数组中

1、传入顺序索引数组

In [94]: arr=np.arange(32).reshape((8,4))

In [95]: arr
Out[95]:
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23],
       [24, 25, 26, 27],
       [28, 29, 30, 31]])

In [96]: arr[[4,2,1,7]]
Out[96]:
array([[16, 17, 18, 19],
       [ 8,  9, 10, 11],
       [ 4,  5,  6,  7],
       [28, 29, 30, 31]])

2、传入倒序索引数组

In [97]: arr[[-4,-2,-1,-7]]
Out[97]:
array([[16, 17, 18, 19],
       [24, 25, 26, 27],
       [28, 29, 30, 31],
       [ 4,  5,  6,  7]])

3、传入多个索引数组(要使用np.ix_)

In [98]: arr[np.ix_([1,5,7,2],[0,3,1,2])]
Out[98]:
array([[ 4,  7,  5,  6],
       [20, 23, 21, 22],
       [28, 31, 29, 30],
       [ 8, 11,  9, 10]])

整数索引

Example1(其结果包括数组中(0,0),(1,1)和(2,0)位置处的元素。)

In [111]: x=np.arange(12).reshape((4,3))
In [112]: x
Out[112]:
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11]])
In [113]: y=x[[0,1,2],[0,1,0]]

In [114]: y
Out[114]: array([0, 4, 6])

Example2(其结果包括数组中(0,0),(0,2),(3,0)和(3,2)位置处的元素。)


In [117]: rows=np.array([[0,0],[3,3]])

In [118]: cols=np.array([[0,2],[0,2]])

In [119]: y=x[rows,cols]

In [120]: y
Out[120]:
array([[ 0,  2],
       [ 9, 11]])

布尔索引

In [129]: x[x>5]
Out[129]: array([ 6,  7,  8,  9, 10, 11])
展开阅读全文

numpy索引

03-14

<ul style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;">rn <li>rn <span>Tensorflow2.0介绍:</span> rn </li>rn</ul>rn<p style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;">rn tensorflow是GOOGLE在2015年底发布的一款深度学习框架,也是目前全世界用得最多,发展最好的深度学习框架。2019年3月8日,GOOGLE发布最新tensorflow2版本。新版本的tensorflow有很多新特征,更快更容易使用更人性化。但是老版的tensorflow程序在新版本中几乎都无法继续使用,所以我们有必要学习新版tensorflow2的新用法。rn</p>rn<ul style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;">rn <li>rn <span>课程介绍:</span> rn </li>rn</ul>rn<p style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;">rn 我们的这门课程适合小白学习,也适合有基础的同学学习。课程会从0开始学习,从python环境安装,python入门,numpy,pandas,matplotlib使用,深度学习基础,一直讲到tensorflow基础,进阶,项目实战。不管你是0基础小白,想进入AI行业,还是有一定基础,想学习最新的tensorflow2的使用,都适合我们这门课程。rn</p>rn<ul style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;">rn <li>rn <span>讲师介绍:</span> rn </li>rn</ul>rn<p style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;">rn 覃秉丰,物理系毕业转AI行业,想转行同学可以找我聊聊。机器学习、深度学习神经网络领域多年研究开发授课经验,精通算法原理与编程实践;曾完成过多项图像识别、目标识别、语音识别等企业项目,一线实战经验丰富;长期为多家包括世界五百强在内的大型企业总部做人工智能技术内训服务(中国移动、中国银行,华夏银行,中国太平洋,国家电网、中海油等)。上课特点:公式尽量一个一个符号推,代码尽量一行一行讲,希望所有人都能学有所得。rn</p>

没有更多推荐了,返回首页