机器学习:朴素贝叶斯

本文介绍了朴素贝叶斯算法的基础知识,包括先验概率、条件概率和后验概率的计算,强调了独立同分布的假设对简化模型的重要性。通过贝叶斯公式求解后验概率,用于预测数据的类别,并探讨了拉普拉斯平滑处理零概率问题的方法。
摘要由CSDN通过智能技术生成

一、概述

预测模型

 

即:概率等于在Ck类的概率乘以Ck发生的条件下x发生的概率。x发生的概率等于x的所有特征同时发生的概率。

策略:

先验概率最大化

算法计算公式:

贝叶斯估计的条件概率计算:

先验概率计算: 

//================补充===============//

先验概率P(Y)

条件概率P(X|Y)

联合概率分布P(X,Y) = 先验概率P(Y)*条件概率P(X|Y)

后验概率P(Y|X)

贝叶斯公式就是用来求后验概率,就是要先求出先验概率和条件概率。

 P(X,Y) = P(X|Y)P(Y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

stephon_100

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值