GAN论文笔记

本文深入探讨了生成对抗网络(GAN)的工作原理,包括生成模型和判别模型的角色。文章详细介绍了训练过程,以及如何通过多层感知器构建生成器和判别器。通过图示和理论分析,解释了GAN如何最小化生成器和判别器之间的Jensen-Shannon散度,以逼近原始数据分布。最后,提供了关键的TensorFlow代码片段和进一步的学习资源。
摘要由CSDN通过智能技术生成

作者指出,深度学习的目的旨在建立能够表示人造的具体应用中的数据分布的模型。为了避免极大似然估计和相关策略中的可能性计算逼近问题,提出GAN:由生成模型和判别模型组成,其中生成模型负责伪造数据,而判别模型负责检测样本服从模型分布还是原始数据分布。

本文主要研究生成模型通过多层感知器传输随机噪声来生成样本,判别模型也是多层感知器的情况。

Adversarial nets

为了学习生成器在数据x上产生的分布p_{g},对输入噪声变量定义一个先验函数p_{z}(z),再定义一个到数据空间的映射G(z;\Theta _{g}),其中G表示一个带有参数\Theta _{g}的多层感知器表示的可微函数。同时定义一个多层感知器D(x;\Theta _{d})输出一个单一标量。D(x)表示x来源于数据而不是生成器产生

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值