论文总结 | GAN
ICCV2019
Paper | Kernel |
---|---|
SinGAN: Learning a Generative Model from a Single Natural Image [paper] [code] (2019年的bestpaper) | Motivation: 1. Unconditional GANs 针对 class pecific 的数据集(如faces)取得成功,但建模具有多个类别、高度多样化的数据集(如ImageNet)的分布仍然是一项重大挑战。 2. 目前针对single image 的 GAN,大多是基于条件或某些特定任务(如超分辨),而非条件的GAN也只局限在纹理这样简单结构的图像生成任务中。 Contribution: 1. 能用一个简单统一的学习框架解决各种图像处理任务:paint-to-image, editing, harmonization, super-resolution, and animation。 2. 生成高质量结果,保存训练样本内部patch的关系。 3. 使用相同的生成网络即可完成所有任务,无需任何其他信息或超出原始训练样本的进一步训练。 金字塔式的coarse to fine网络 Method:目标是学习到一个非条件生成对抗模型,它能捕获输入的单张训练图像的内部数据关系(internal statistics)。为此提出了层级的patch-GANs模型(Markovian discriminator),训练由下向上。最底层由噪声 Z N Z_N ZN输入到 G N G_N GN的得到 x ~ N \tilde{x}_N x~N,接着利用生成图像的patch x ~ N \tilde{x}_N x~N和当前层的patch x N x_N xN(由训练数据下采样得到)放入判别器 D N D_N DN。通过这种一层一层、由下往上的训练过程,每一层由下一层的生成结果 x ~ n + 1 \tilde{x}_{n+1} x~n+1上采样,与 z n z_n zncat一起送入 G n G_{n} Gn,得到 x ~ n \tilde{x}_{n} x~n,经过 D D D,得到最终的结果。 G G G和 D D D结构相同。SinGAN在其他图像生成任务中的应用,可以看下论文实验部分。 |
参考博客:
https://blog.csdn.net/dqcfkyqdxym3f8rb0/article/details/102927036