论文总结 | GAN

论文总结 | GAN

ICCV2019

PaperKernel
SinGAN: Learning a Generative Model from a Single Natural Image
[paper] [code]
(2019年的bestpaper)
Motivation:
1. Unconditional GANs 针对 class pecific 的数据集(如faces)取得成功,但建模具有多个类别、高度多样化的数据集(如ImageNet)的分布仍然是一项重大挑战。
2. 目前针对single image 的 GAN,大多是基于条件或某些特定任务(如超分辨),而非条件的GAN也只局限在纹理这样简单结构的图像生成任务中。
Contribution:
1. 能用一个简单统一的学习框架解决各种图像处理任务:paint-to-image, editing, harmonization, super-resolution, and animation。
2. 生成高质量结果,保存训练样本内部patch的关系。
3. 使用相同的生成网络即可完成所有任务,无需任何其他信息或超出原始训练样本的进一步训练。
金字塔式的coarse to fine网络
Method:在这里插入图片描述目标是学习到一个非条件生成对抗模型,它能捕获输入的单张训练图像的内部数据关系(internal statistics)。为此提出了层级的patch-GANs模型(Markovian discriminator),训练由下向上。最底层由噪声 Z N Z_N ZN输入到 G N G_N GN的得到 x ~ N \tilde{x}_N x~N,接着利用生成图像的patch x ~ N \tilde{x}_N x~N和当前层的patch x N x_N xN(由训练数据下采样得到)放入判别器 D N D_N DN。通过这种一层一层、由下往上的训练过程,每一层由下一层的生成结果 x ~ n + 1 \tilde{x}_{n+1} x~n+1上采样,与 z n z_n zncat一起送入 G n G_{n} Gn,得到 x ~ n \tilde{x}_{n} x~n,经过 D D D,得到最终的结果。 G G G D D D结构相同。SinGAN在其他图像生成任务中的应用,可以看下论文实验部分。

参考博客:
https://blog.csdn.net/dqcfkyqdxym3f8rb0/article/details/102927036

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小涵涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值