TensorFlow目标检测API中这些损失(loss)代表含义是什么

TensorFlow目标检测API中这些损失(loss)代表含义是什么?

RPN(Region Proposal Network)区域候选网络损失:

1. Losses/Loss/RPNLoss/localization_loss:RPN的本地化损失或边界框回归器的损失

2. Losses/Loss/RPNLoss/objectness_loss:分类器的损失,分类器是对边界框是感兴趣的对象还是背景进行分类

最终分类损失:

3. Losses/Loss/BoxClassifierLoss/classification_loss:将检测到的对象分类为各种类别(猫,狗,飞机等)的损失

4. Losses/Loss/BoxClassifierLoss/localization_loss:本地化损失或边界框回归器的损失

5. Losses/TotalLoss:总损失

6. Losses/clone_loss:仅在多个GPU上训练时才有意义,TensorFlow将创建模型的克隆以在每个GPU上训练并报告每个克隆的损失。如果您在单个GPU / CPU上训练模型,那么您将看到clone_lossTotalLoss相同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Color Space

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值