文章目录
- 2021 年 1 月份管综初数真题
-
- 一、问题求解(本大题共 5 小题,每小题 3 分,共 45 分)下列每题给出 5 个选项中,只有一个是符合要求的,请在答题卡上将所选择的字母涂黑。
-
- 真题(2021-01)-应用题-集合-两个集合: A ∪ B = A + B − A ∩ B = 全集 − A ˉ ∩ B ˉ A∪B=A+B-A∩B=全集-\bar{A}∩\bar{B} A∪B=A+B−A∩B=全集−Aˉ∩Bˉ-三个集合: A ∪ B ∪ C = A + B + C − A ∩ B − B ∩ C − A ∩ C + A ∩ B ∩ C = 全集 − A ˉ ∩ B ˉ ∩ C ˉ A∪B∪C=A+B+C-A∩B-B∩C-A∩C+A∩B∩C=全集-\bar{A}∩\bar{B}∩\bar{C} A∪B∪C=A+B+C−A∩B−B∩C−A∩C+A∩B∩C=全集−Aˉ∩Bˉ∩Cˉ
- 真题(2021-02)-数列-等差数列-等差中项
- 真题(2021-03)-算术-实数-无理数-多个无理分数相加减,先将分母有理化,再消项
- 真题(2021-04)-算术-质数-常见质数-2,3,5,7,11,13,17,19,23,29-穷举法
- 真题(2021-05)-代数-函数-一元二次函数-对称轴- − b 2 a -\frac{b}{2a} −2ab
- 真题(2021-06)-数据分析-概率已知事件的概率求概率⟹ 独立事件概型⟹ 乘法计算概率
- 真题(2021-07)-几何-立体几何-球-球体:体积: V = 4 3 π r 3 V=\frac{4}{3}πr^3 V=34πr3——【数字编码法:旗手骑着弓箭手】;全球表面积: S 表 = 4 π r 2 S_表=4πr^2 S表=4πr2——【理解记忆法:极限为圆柱体表面积2πr*2r】
- 真题(2021-08)-数据分析-排列组合-计数原理-加法原理
- 真题(2021-09)-几何-平面几何-扇形-弓形面积=扇形面积−三角形面积-扇形:周长/弧长 l = r Θ = n 。 36 0 。 ⋅ C 圆 = n 。 36 0 。 ⋅ 2 π r = n 。 π r 18 0 。 l=rΘ=\frac{n^。}{360^。}·C_圆=\frac{n^。}{360^。}·2πr=\frac{n^。πr}{180^。} l=rΘ=360。n。⋅C圆=360。n。⋅2πr=180。n。πr,面积 S 扇形 = n 。 36 0 。 ⋅ S 圆 = n 。 36 0 。 ⋅ π r 2 = 1 2 ⋅ n 。 π r 18 0 。 ⋅ r = 1 2 l r S_{扇形}=\frac{n^。}{360^。}·S_圆=\frac{n^。}{360^。}·πr^2=\frac{1}{2}·\frac{n^。πr}{180^。}·r=\frac{1}{2}lr S扇形=360。n。⋅S圆=360。n。⋅πr2=21⋅180。n。πr⋅r=21lr(Θ为扇形圆心角的弧度数,n为扇形圆心角的角度,r为扇形半径
- 真题(2021-10)-几何-解析几何-最值-若四边形ABCD的对角线AC、BD满足AC⊥BD,则 S A B C D = 1 2 A C ⋅ B D S_{ABCD}=\frac{1}{2}AC·BD SABCD=21AC⋅BD
- 真题(2021-11)-数据分析-概率-已知元素的数量求概率⟹ 古典概型⟹ 两个排列组合相除计算概率或穷举法⟹ 分母有顺序要求是A运算,无顺序是C运算,分子数量少用穷举,数量多用C运算⟹ 袋中取球模型??
- 真题(2021-12)-应用题-溶液-十字交叉-画叉字,大量上,小量下,中量中,交叉减,差相除,同量比(大量减中量的差与中量减大量的差之比等于其量比,其中,中量可以是平均值,混合值;量比可以是数量比,质量比)
- 真题(2021-13)-代数-函数-一元二次函数-换元法
- 真题(2021-14)-数据分析-概率-已知元素的数量求概率⟹ 古典概型⟹ 两个排列组合相除计算概率或穷举法⟹ 分母有顺序要求是A运算,无顺序是C运算,分子数量少用穷举,数量多用C运算⟹ 袋中取球模型⟹ 正难则反⟹ 转为一次取球模型⟹ 设口袋中有a个白球,b个黑球,一次取出若干个球,则恰好取了 m ( m ≤ a ) m (m≤a) m(m≤a)个白球, n ( n ≤ b ) n(n≤b) n(n≤b)个黑球的概率是 P = C a m ⋅ C b n C a + b m + n P=\frac{C_a^m·C_b^n}{C_{a+b}^{m+n}} P=Ca+bm+nCam⋅Cbn。
- 真题(2021-15)-应用题-路程-相遇题
- 二、条件充分性判断:
-
-
- 真题(2021-16)-应用题-十字交叉-画叉字,大量上,小量下,中量中,交叉减,差相除,同量比(大量减中量的差与中量减大量的差之比等于其量比,其中,中量可以是平均值,混合值;量比可以是数量比,质量比)
- 真题(2021-17)-应用题-工程
- 真题(2021-18)-应用题-比例-特值法
- 真题(2021-19)-算术-绝对值-绝对值和-绝对值三角不等式-第一步:记住公式,绝对值差,和差绝对值,绝对值和。第二步:记住口诀:取等条件:中间相加取等号,左异右同零取到;中间相减取等号,上面符号方向调(其中,座椅油桶,左异右同是ab的正负号相同与否)
- 真题(2021-20)-几何-解析几何-位置-线圆位置-相切-点到直线的距离公式: l : a x + b y + c = 0 l:ax+by+c=0 l:ax+by+c=0,点( x 0 , y 0 x_0,y_0 x0,y0)到 l l l的距离为 d = ∣ a x 0 + b y 0 + c ∣ a 2 + b 2 d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} d=a2+b2∣ax0+by0+c∣
- 真题(2021-21)-几何-解析几何-位置-线圆位置-相离-也还是转为圆心点到直线的距离公式
- 真题(2021-22)-应用题-出现了两个及以上未知量,而数量关系却少于未知量的个数-不定方程-整数不定方程-先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解
- 真题(2021-23)-应用题-路程
- 真题(2021-24)-代数-数列-等比数列-数列判定-
- 真题(2021-25)-数列-等差数列和等比数列
-