剑指offer55.2 平衡二叉树
输入一棵二叉树的根结点,判断该树是不是平衡二叉树。
如果某二叉树中任意结点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。
注意:
规定空树也是一棵平衡二叉树。
样例
输入:二叉树[5,7,11,null,null,12,9,null,null,null,null]如下所示,
5
/ \
7 11
/ \
12 9
输出:true
思路1:
递归判断,分别求得左子树和右子树的深度,然后判断其差值是否小于1。
AcWing-72 C++ code:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int TreeDepth(TreeNode* root){
if(root == NULL){
return 0;
}
int nleft = TreeDepth(root->left);
int nright = TreeDepth(root->right);
return (nleft > nright) ? nleft + 1 : nright + 1;
}
bool isBalanced(TreeNode* root) {
if(root == NULL){
return true;
}
int nleft = TreeDepth(root->left);
int nright = TreeDepth(root->right);
if(abs(nleft - nright) > 1){
return false;
}
return isBalanced(root->left) && isBalanced(root->right);
}
};
思路2:
后续遍历的方法去遍历其左右子树,判断其左右子树是不是平衡二叉树,并且用depth分别去记录其左右子树的深度。
AcWing-72 C++ code:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode* root, int &depth){
if(root == NULL){
return true;
}
int left = 0, right = 0;
if(isBalanced(root->left, left) && isBalanced(root->right, right)){
if(abs(left - right) <= 1){
depth = (left > right) ? left + 1 : right + 1;
return true;
}
}
return false;
}
bool isBalanced(TreeNode* root) {
if(root == NULL){
return true;
}
int depth = 0;
return isBalanced(root, depth);
}
};