torch.nn.LogSoftmax()与输入具有相同尺寸和形状的张量,其值在[-inf,0)范围内

本文详细介绍了PyTorch中LogSoftmax函数的工作原理,包括其输入输出形状、参数设置及如何在神经网络中使用该函数进行操作。通过实例演示了LogSoftmax函数的具体应用。
部署运行你感兴趣的模型镜像

LOGSOFTMAX

torch.nn.LogSoftmax(dim=None)[SOURCE]

Shape:

  • 输入: (*)  ( * ) ,其中*表示任意数量的附加尺寸

  • 输出: (*)  ( ∗ ) ,形状与输入相同

Parameters

dim ( int )–将用来计算LogSoftmax的维.

Returns

与输入具有相同尺寸和形状的张量,其值在[-inf,0)范围内

Examples:

>>> m = nn.LogSoftmax()
>>> input = torch.randn(2, 3)
>>> output = m(input)

Next  Previous

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

在深度学习中,对张量进行归一化处理通常用于特征向量的标准化,以便提升模型训练的稳定性收敛速度。`torch.nn.functional.normalize` 是 PyTorch 提供的一个函数,可用于对张量按照指定的范数进行归一化操作。该函数的基本公式为: ```python normalize(x) = x / max(||x||, eps) ``` 其中,`||x||` 表示指定维度上的向量范数,`eps` 是一个小的常数,用于防止除以零的情况。 如果目标是对张量 `q` 在最后一个维度上进行归一化,可以使用如下方式调用该函数: ```python import torch import torch.nn.functional as F # 示例张量 q = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) # 在最后一个维度(dim=-1)上进行L2范数归一化 y = F.normalize(q, p=2, dim=-1) print(y) # 输出:标准化到单位向量 ``` 上述代码中,参数 `p=2` 指定了使用 L2 范数进行归一化,而 `dim=-1` 表示归一化的操作是在张量的最后一个维度上完成的。这种操作对于将每个样本的特征向量转换为单位长度非常有用,例如在注意力机制中的查询向量(Query)、键向量(Key)以及向量(Value)的操作中[^1]。 ### 使用场景 - **特征向量归一化**:在神经网络中,输入特征或中间层输出可能需要归一化,以减少梯度消失或爆炸的风险。 - **注意力机制**:在 Transformer 等模型中,为了保证点积结果的数稳定性,通常会对查询向量键向量进行归一化。 - **损失函数设计**:某些损失函数(如对比损失、三元组损失等)要求输入向量是单位向量形式。 ### 注意事项 - 如果张量的维度较多,应确保 `dim` 参数正确指向需要归一化的维度。 - 默认情况下,`p=2` 表示 L2 范数,但也可以选择其他范数(如 `p=1` 或 `p=float('inf')`)。 -输入张量包含多个批次数据,归一化会在每个样本的对应维度上独立执行。 ### 示例输出 运行上述代码后,输出结果将是每个行向量被归一化后的单位向量,具体表现为: ``` tensor([[0.2673, 0.5345, 0.8018], [0.4558, 0.5698, 0.6838]]) ``` 此结果表明每行的向量已被缩放至 L2 范数为 1 的单位向量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值