sklearn(五)计算acc:使用metrics.accuracy_score()计算分类的准确率

sklearn.metrics.accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None)
输入参数:

y_true:真是标签。二分类和多分类情况下是一列,多标签情况下是标签的索引。

y_pred:预测标签。二分类和多分类情况下是一列,多标签情况下是标签的索引。

normalize:bool, optional (default=True),如果是false,正确分类的样本的数目(int);如果为true,返回正确分类的样本的比例,必须严格匹配真实数据集中的label,才为1,否则为0。

sample_weight:array-like of shape (n_samples,), default=None。Sample weights.

输出:

如果normalize == True,返回正确分类的样本的比例,否则返回正确分类的样本的数目(int)。
————————————————
版权声明:本文为CSDN博主「凝眸伏笔」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/pearl8899/article/details/109877348

 

https://blog.csdn.net/pearl8899/article/details/109877348

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值