sklearn.metrics.accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None)
输入参数:
y_true:真是标签。二分类和多分类情况下是一列,多标签情况下是标签的索引。
y_pred:预测标签。二分类和多分类情况下是一列,多标签情况下是标签的索引。
normalize:bool, optional (default=True),如果是false,正确分类的样本的数目(int);如果为true,返回正确分类的样本的比例,必须严格匹配真实数据集中的label,才为1,否则为0。
sample_weight:array-like of shape (n_samples,), default=None。Sample weights.
输出:
如果normalize == True,返回正确分类的样本的比例,否则返回正确分类的样本的数目(int)。
————————————————
版权声明:本文为CSDN博主「凝眸伏笔」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/pearl8899/article/details/109877348