1. 思路点拨
年龄问题的特点有2个:
- 年龄的差值恒定
- 年龄同步增长.
2. 习题
2.1 例题1
哥哥5年前的年龄是弟弟7年后的年龄,哥哥4年后的年龄与弟弟三年前的年龄和是35岁,求哥哥的年龄为()
答: 哥哥的年龄为 23
解:设哥哥年龄x,弟弟年龄y
x-5 = y + 7 即 x - y = 12 (哥哥比弟弟大12岁),y = x -12
x + 4 + (y - 3) = 35 即 x + y = 34
x + x - 12 = 34
2x = 46
x = 23
哥哥的年龄为 23
2.2 例题2
今年王先生的年龄是他父亲的年龄一半,他父亲的年龄又是他儿子的15倍,两年后他们三人的年龄之和恰好为100岁,那么王先生今年的岁数是()
答: 30
解:
王先生的年龄是他父亲的年龄一半,即王:父 = 1 : 2
他父亲的年龄又是他儿子的15倍,儿:父 = 1 : 15
由于父是一样的,故比例进行转换如下:
王:父 = 15 : 30
儿:父 = 2 : 30
即王:父:儿 = 15 : 30 : 2
设比例系数x,根据两年后他们三人的年龄之和恰好为100岁,得到如下关系
15x + 2 + 30x + 2 + 2x + 2 = 100
47x = 94
x = 2
即仨人的年龄分别为:30, 60, 4
王先生今年的岁数是 30
2.3 例题3(2019真题)
能确定小明的年龄
1)小明的年龄是完全平方数
2)20年后小明的年龄是完全平方数
1)和2)单独不成立,1)和2)联合则成立,可以确定小明的年龄
完全平方数的性质 一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。例如:0,1,4,9,16,25,36,49,64,81,100
1)小明的年龄是完全平方数
x = y^2 显然单独这个条件没办法确定小明的年龄
2)20年后小明的年龄是完全平方数
x + 20 = z^2 显然单独这个条件没办法确定小明的年龄
将1)和2)合并
x = y^2 和 x + 20 = z^2
y^2 + 20 = z^2
z^2 - y^2 = 20
(z+y)(z-y) = 20
可以得到如下
1*20 = 20
2*10 = 20
4*5 = 20
1. z-y = 1 和 z+y = 20,得z = 21/2 不满足完全平方数
2. z-y = 20 和 z+y = 1,得z = 21/2 不满足完全平方数
3. z-y = 2 和 z+y = 10,得z = 6,y=4,x = 2 岁,可以唯一确认小明年龄
4. z-y = 10 和 z+y = 2,得z = 6,y=-4,负值不满足完全平方数
5. z-y = 4 和 z+y = 5,得z = 9/2 不满足完全平方数
6. z-y = 5 和 z+y = 4,得z = 9/2 不满足完全平方数