MBA-day13数学-年龄问题

1. 思路点拨

年龄问题的特点有2个:

  1. 年龄的差值恒定
  2. 年龄同步增长.

2. 习题

2.1 例题1

哥哥5年前的年龄是弟弟7年后的年龄,哥哥4年后的年龄与弟弟三年前的年龄和是35岁,求哥哥的年龄为()

答: 哥哥的年龄为 23

解:设哥哥年龄x,弟弟年龄y
x-5 = y + 7 即 x - y = 12 (哥哥比弟弟大12岁),y = x -12
x + 4 + (y - 3) = 35 即 x + y = 34

x + x - 12 = 34
2x = 46
x = 23
哥哥的年龄为 23

2.2 例题2

今年王先生的年龄是他父亲的年龄一半,他父亲的年龄又是他儿子的15倍,两年后他们三人的年龄之和恰好为100岁,那么王先生今年的岁数是()

答: 30

解:
王先生的年龄是他父亲的年龄一半,即王:父 = 1 : 2
他父亲的年龄又是他儿子的15倍,儿:父 = 1 : 15
由于父是一样的,故比例进行转换如下:
王:父 = 15 : 30
儿:父 = 2 : 30
即王:父:儿 = 15 : 30 : 2
设比例系数x,根据两年后他们三人的年龄之和恰好为100岁,得到如下关系
15x + 2 + 30x + 2 + 2x + 2 = 100
47x = 94
x = 2
即仨人的年龄分别为:30, 60, 4

王先生今年的岁数是 30

2.3 例题3(2019真题)

能确定小明的年龄
1)小明的年龄是完全平方数
2)20年后小明的年龄是完全平方数

1)和2)单独不成立,1)和2)联合则成立,可以确定小明的年龄

完全平方数的性质 一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。例如:0,1,4,9,16,25,36,49,64,81,100

1)小明的年龄是完全平方数
x = y^2 显然单独这个条件没办法确定小明的年龄

2)20年后小明的年龄是完全平方数
x + 20 = z^2 显然单独这个条件没办法确定小明的年龄

将1)和2)合并
x = y^2 和 x + 20 = z^2
y^2 + 20 = z^2
z^2 - y^2 = 20
(z+y)(z-y) = 20

可以得到如下
1*20 = 20
2*10 = 20
4*5 = 20

1. z-y = 1 和 z+y = 20,得z = 21/2 不满足完全平方数
2. z-y = 20 和 z+y = 1,得z = 21/2 不满足完全平方数
3. z-y = 2 和 z+y = 10,得z = 6,y=4,x = 2 岁,可以唯一确认小明年龄
4. z-y = 10 和 z+y = 2,得z = 6,y=-4,负值不满足完全平方数
5. z-y = 4 和 z+y = 5,得z = 9/2 不满足完全平方数
6. z-y = 5 和 z+y = 4,得z = 9/2 不满足完全平方数


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

法迪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值