开源多策略改进RIME算法

使用记忆机制和线性种群规模缩减 (LPSR) 改进RIME算法具有以下几个好处:

1. 提高收敛速度

  • 记忆机制:通过保存历史信息,算法能够快速回溯到优质解,减少探索时间。
  • LPSR:在优化过程中动态调整种群规模,帮助算法更快聚焦于潜在的优秀解。

2. 增强解的多样性

  • 记忆机制:保留不同的解,避免早期收敛到局部最优解,保持种群的多样性。
  • LPSR:通过减少种群中的个体数量,确保每个个体都能够充分探索解决方案空间。

3. 减少计算成本

  • 种群规模缩减:降低了算法在每一代中需要评估的个体数量,从而减少计算开销,尤其是在高维度问题中。

4. 提高鲁棒性

  • 记忆机制:通过整合多代的优秀解,增强算法对噪声和不确定性的鲁棒性。
  • LPSR:灵活调整种群规模,使得算法在面对不同复杂度的问题时更具适应性。

5. 更好的平衡探索与利用

  • 记忆机制:允许算法在新解和历史优秀解之间进行平衡,提高搜索效率。
  • LPSR:通过调整种群规模,使得在不同阶段可以动态地探索更多区域或聚焦在优质区域。
function [Best_rime_rate, Best_rime, Convergence_curve] = RIME(N, Max_iter, lb, ub, dim, fobj)

    % 初始化
    Best_rime = zeros(1, dim);
    Best_rime_rate = inf; % 若为最大化问题则改为 -inf
    Rimepop = initialization(N, dim, ub, lb);
    Lb = lb .* ones(1, dim);
    Ub = ub .* ones(1, dim);
    it = 1;
    Convergence_curve = zeros(1, Max_iter);
    Rime_rates = zeros(1, N);
    newRime_rates = zeros(1, N);
    W = 5; % Soft-rime 参数
    memory = []; % 记忆机制

    % 计算初始适应度值
    for i = 1:N
        Rime_rates(1, i) = fobj(Rimepop(i, :));
        % 贪婪选择
        if Rime_rates(1, i) < Best_rime_rate
            Best_rime_rate = Rime_rates(1, i);
            Best_rime = Rimepop(i, :);
        end
    end
    
    % 主循环
    while it <= Max_iter
        RimeFactor = (rand - 0.5) * 2 * cos((pi * it / (Max_iter / 10))) * (1 - round(it * W / Max_iter) / W);
        E = (it / Max_iter) ^ 0.5;
        newRimepop = Rimepop;
        normalized_rime_rates = normr(Rime_rates);
        
        for i = 1:N
            for j = 1:dim
                % 自适应更新策略
                if rand() < E
                    newRimepop(i, j) = Best_rime(1, j) + RimeFactor * ((Ub(j) - Lb(j)) * rand + Lb(j));
                end
                
                % 引入记忆机制
                if ~isempty(memory)
                    newRimepop(i, j) = (newRimepop(i, j) + memory(1, j)) / 2;
                end

                % 随机局部搜索
                if rand() < 0.2 % 设置局部搜索概率
                    localSearchStep = (Ub(j) - Lb(j)) * randn();
                    newRimepop(i, j) = newRimepop(i, j) + localSearchStep;
                end
                
                % 硬霜穿刺机制
                if rand() < normalized_rime_rates(i)
                    newRimepop(i, j) = Best_rime(1, j);
                end
            end
        end
        
        % 适应度评价及边界处理
        for i = 1:N
            Flag4ub = newRimepop(i, :) > ub;
            Flag4lb = newRimepop(i, :) < lb;
            newRimepop(i, :) = (newRimepop(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb;
            newRime_rates(1, i) = fobj(newRimepop(i, :));

            % 贪婪选择
            if newRime_rates(1, i) < Rime_rates(1, i)
                Rime_rates(1, i) = newRime_rates(1, i);
                Rimepop(i, :) = newRimepop(i, :);
                if newRime_rates(1, i) < Best_rime_rate
                    Best_rime_rate = Rime_rates(1, i);
                    Best_rime = Rimepop(i, :);
                    memory = Best_rime; % 更新记忆机制
                end
            end
        end
        
        % 线性种群规模缩减 (LPSR)
        if mod(it, 10) == 0 % 每10次迭代减少种群规模
            N = max(5, round(N * (1 - it / Max_iter)));
            Rimepop = Rimepop(1:N, :);
            Rime_rates = Rime_rates(1:N);
            newRime_rates = newRime_rates(1:N);
        end
        
        Convergence_curve(it) = Best_rime_rate;
        it = it + 1;
    end
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值