使用记忆机制和线性种群规模缩减 (LPSR) 改进RIME算法具有以下几个好处:
1. 提高收敛速度
- 记忆机制:通过保存历史信息,算法能够快速回溯到优质解,减少探索时间。
- LPSR:在优化过程中动态调整种群规模,帮助算法更快聚焦于潜在的优秀解。
2. 增强解的多样性
- 记忆机制:保留不同的解,避免早期收敛到局部最优解,保持种群的多样性。
- LPSR:通过减少种群中的个体数量,确保每个个体都能够充分探索解决方案空间。
3. 减少计算成本
- 种群规模缩减:降低了算法在每一代中需要评估的个体数量,从而减少计算开销,尤其是在高维度问题中。
4. 提高鲁棒性
- 记忆机制:通过整合多代的优秀解,增强算法对噪声和不确定性的鲁棒性。
- LPSR:灵活调整种群规模,使得算法在面对不同复杂度的问题时更具适应性。
5. 更好的平衡探索与利用
- 记忆机制:允许算法在新解和历史优秀解之间进行平衡,提高搜索效率。
- LPSR:通过调整种群规模,使得在不同阶段可以动态地探索更多区域或聚焦在优质区域。
function [Best_rime_rate, Best_rime, Convergence_curve] = RIME(N, Max_iter, lb, ub, dim, fobj)
% 初始化
Best_rime = zeros(1, dim);
Best_rime_rate = inf; % 若为最大化问题则改为 -inf
Rimepop = initialization(N, dim, ub, lb);
Lb = lb .* ones(1, dim);
Ub = ub .* ones(1, dim);
it = 1;
Convergence_curve = zeros(1, Max_iter);
Rime_rates = zeros(1, N);
newRime_rates = zeros(1, N);
W = 5; % Soft-rime 参数
memory = []; % 记忆机制
% 计算初始适应度值
for i = 1:N
Rime_rates(1, i) = fobj(Rimepop(i, :));
% 贪婪选择
if Rime_rates(1, i) < Best_rime_rate
Best_rime_rate = Rime_rates(1, i);
Best_rime = Rimepop(i, :);
end
end
% 主循环
while it <= Max_iter
RimeFactor = (rand - 0.5) * 2 * cos((pi * it / (Max_iter / 10))) * (1 - round(it * W / Max_iter) / W);
E = (it / Max_iter) ^ 0.5;
newRimepop = Rimepop;
normalized_rime_rates = normr(Rime_rates);
for i = 1:N
for j = 1:dim
% 自适应更新策略
if rand() < E
newRimepop(i, j) = Best_rime(1, j) + RimeFactor * ((Ub(j) - Lb(j)) * rand + Lb(j));
end
% 引入记忆机制
if ~isempty(memory)
newRimepop(i, j) = (newRimepop(i, j) + memory(1, j)) / 2;
end
% 随机局部搜索
if rand() < 0.2 % 设置局部搜索概率
localSearchStep = (Ub(j) - Lb(j)) * randn();
newRimepop(i, j) = newRimepop(i, j) + localSearchStep;
end
% 硬霜穿刺机制
if rand() < normalized_rime_rates(i)
newRimepop(i, j) = Best_rime(1, j);
end
end
end
% 适应度评价及边界处理
for i = 1:N
Flag4ub = newRimepop(i, :) > ub;
Flag4lb = newRimepop(i, :) < lb;
newRimepop(i, :) = (newRimepop(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb;
newRime_rates(1, i) = fobj(newRimepop(i, :));
% 贪婪选择
if newRime_rates(1, i) < Rime_rates(1, i)
Rime_rates(1, i) = newRime_rates(1, i);
Rimepop(i, :) = newRimepop(i, :);
if newRime_rates(1, i) < Best_rime_rate
Best_rime_rate = Rime_rates(1, i);
Best_rime = Rimepop(i, :);
memory = Best_rime; % 更新记忆机制
end
end
end
% 线性种群规模缩减 (LPSR)
if mod(it, 10) == 0 % 每10次迭代减少种群规模
N = max(5, round(N * (1 - it / Max_iter)));
Rimepop = Rimepop(1:N, :);
Rime_rates = Rime_rates(1:N);
newRime_rates = newRime_rates(1:N);
end
Convergence_curve(it) = Best_rime_rate;
it = it + 1;
end
end