什么是并矢

在多体动力学里面有并矢的概念,其实就是一个二阶张量的表达。

矢量 a \mathbf{a} a 和矢量 b \mathbf{b} b的并矢积 a b \mathbf{a b} ab定义为按下列规则变换任意矢量的变换
( a b ) ⋅ c = a ( b ⋅ c ) (\mathbf{a b}) \cdot \mathbf{c}=\mathbf{a}(\mathbf{b} \cdot \mathbf{c}) (ab)c=a(bc)

我们可以说明并矢满足张量的定义(加法和数乘):

( a b ) ⋅ ( α c + β d ) = a [ b ⋅ ( α c + β d ) ] = a [ α ( b ⋅ c ) + β ( b ⋅ d ) ] = α a ( b ⋅ c ) + β a ( b ⋅ d ) = α ( a b ) ⋅ c + β ( a b ) ⋅ d \begin{aligned} & (\mathbf{a b}) \cdot(\alpha \mathbf{c}+\beta \mathbf{d})=\mathbf{a}[\mathbf{b} \cdot(\alpha \mathbf{c}+\beta \mathbf{d})] \\ = & \mathbf{a}[\alpha(\mathbf{b} \cdot \mathbf{c})+\beta(\mathbf{b} \cdot \mathbf{d})]=\alpha \mathbf{a}(\mathbf{b} \cdot \mathbf{c})+\beta \mathbf{a}(\mathbf{b} \cdot \mathbf{d}) \\ = & \alpha(\mathbf{a b}) \cdot \mathbf{c}+\beta(\mathbf{a b}) \cdot \mathbf{d} \end{aligned} ==(ab)(αc+βd)=a[b(αc+βd)]a[α(bc)+β(bd)]=αa(bc)+βa(bd)α(ab)c+β(ab)d

为什么说它是一个二阶张量呢。我们可以得到它的分量:

( a b ) i j = e i ⋅ ( a b ) ⋅ e j = e i ⋅ [ a ( b ⋅ e j ) ] = e i ⋅ ( a b j ) = ( e i ⋅ a ) b j = a i b j \begin{aligned} (\mathbf{a b})_{\mathrm{ij}} & =\mathbf{e}_{\mathrm{i}} \cdot(\mathbf{a b}) \cdot \mathbf{e}_{\mathrm{j}}=\mathbf{e}_{\mathrm{i}} \cdot\left[\mathbf{a}\left(\mathbf{b} \cdot \mathbf{e}_{\mathrm{j}}\right)\right]=\mathbf{e}_{\mathrm{i}} \cdot\left(\mathbf{a} b_{\mathrm{j}}\right) \\ & =\left(\mathbf{e}_{\mathrm{i}} \cdot \mathbf{a}\right) b_{\mathrm{j}}=a_{\mathrm{i}} b_{\mathrm{j}} \end{aligned} (ab)ij=ei(ab)ej=ei[a(bej)]=ei(abj)=(eia)bj=aibj

有时我们也写作:

( a b ) i j = ( a ⊗ b ) i j = a i b j (\mathbf{a b})_{\mathrm{ij}}=(\mathbf{a} \otimes \mathbf{b})_{\mathrm{ij}}=a_{\mathrm{i}} b_{\mathrm{j}} (ab)ij=(ab)ij=aibj

它的分量的总表达式可以写作:

[ a b ] = [ a 1 b 1 a 1 b 2 a 1 b 3 a 2 b 1 a 2 b 2 a 2 b 3 a 3 b 1 a 3 b 2 a 3 b 3 ] = [ a 1 a 2 a 3 ] [ b 1 b 2 b 3 ] [\mathbf{a b}]=\left[\begin{array}{lll} a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\ a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\ a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3} \end{array}\right]=\left[\begin{array}{l} a_{1} \\ a_{2} \\ a_{3} \end{array}\right]\left[\begin{array}{lll} b_{1} & b_{2} & b_{3} \end{array}\right] [ab]= a1b1a2b1a3b1a1b2a2b2a3b2a1b3a2b3a3b3 = a1a2a3 [b1b2b3]

它的标架可以表示为: e i e j , i , j = 1 , 2 , 3 \mathbf{e}_i\mathbf{e}_j,i,j=1,2,3 eieji,j=1,2,3

列举两个:

e 1 e 1 = [ 1 0 0 ] [ 1 0 0 ] = [ 1 0 0 0 0 0 0 0 0 ] e 1 e 2 = [ 1 0 0 ] [ 0 1 0 ] = [ 0 1 0 0 0 0 0 0 0 ] ⋯ \begin{array}{l} {\mathbf{e}_{1} \mathbf{e}_{1}=\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right]\left[\begin{array}{lll} 1 & 0 & 0 \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]} \\ {\mathbf{e}_{1} \mathbf{e}_{2}=\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right]\left[\begin{array}{lll} 0 & 1 & 0 \end{array}\right]=\left[\begin{array}{lll} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]} \end{array}\\\cdots e1e1= 100 [100]= 100000000 e1e2= 100 [010]= 000100000

于是可以并矢(二阶张量)可以写作:

T = T 11 ( e 1 e 1 ) + T 12 ( e 1 e 2 ) + ⋯ + T 33 ( e 3 e 3 )  即  T = T i j e i e j \begin{array}{c} \mathbf{T}=T_{11}\left(\mathbf{e}_{1} \mathbf{e}_{1}\right)+T_{12}\left(\mathbf{e}_{1} \mathbf{e}_{2}\right)+\cdots+T_{33}\left(\mathbf{e}_{3} \mathbf{e}_{3}\right) \\ \quad \text { 即 } \quad \mathbf{T}=T_{{ij}} \mathbf{e}_{{i}} \mathbf{e}_{{j}} \end{array} T=T11(e1e1)+T12(e1e2)++T33(e3e3)  T=Tijeiej

张量的本质我自我感觉就是标架(一阶张量为 e i \mathbf{e}_i ei,二阶张量为 e i e j \mathbf{e}_i\mathbf{e}_j eiej,高阶以此类推)和坐标(分量)。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目录 第1章 电磁理论基础  1.1 电磁理论中的“符号量”方法  1.2 麦可斯韦方程组的独立方程与非独立方程,限定形式与非限定形式  1.3 麦可斯韦方程组的积分形式  1.4 边界条件  1.5 自由空间中的简谐场  1.6 位函数方法  参考文献 第2章 并格林函数  2.1 麦可斯韦方程组的并形式,电型和磁型并格林函数  2.2 自由空间并格林函数  2.3 并格林函数的分类  2.4 并格林函数的对称性  2.5 互易定理  2.6 辅助互易定理的传输线模型  2.7 导电平面半空间的并格林函数  参考文献 第3章 矩形波导 第4章 圆柱波导  4.1 具有离散本征值的圆柱波函数  4.2 圆柱波导  4.3 圆柱腔  4.4 同轴线  参考文献 第5章 自由空间中的圆柱体  5.1 具有连续本征值的圆柱量波函数  5.2 自由空间并格林函数的本征函数展开  5.3 导体圆柱、介质圆柱与介质覆盖导电圆柱  5.4 近似表达式  参考文献 第6章 完纯导电椭圆柱体  6.1 椭圆柱坐标系中的量波函数  6.2 第一类电型并格林函数  参考文献 第7章 完纯导电劈和半片  7.1 完纯导电劈的并格林函数  7.2 半片  7.3 半片存在时电偶极子的辐射  7.4 半片存在时磁偶极子的辐射  7.5 半片上隙缝的辐射  7.6 半片对平面波的绕射  7.7 圆柱和半片  参考文献 第8章 球形边界 第9章 导电圆锥边界  9.1 导电圆锥并格林函数  9.2 锥面上偶极子天线的辐射  9.3 导电圆锥对平面波的散射  9.4 圆锥边界本征值的计算  参考文献 第10章 平面分层媒质  10.1 平直地面  10.2 平直地面上电偶极子的辐射,索末菲公式  10.3 导电平面上的介质层  10.4 分层媒质的互易定理  10.5 本征函数展开  10.6 空气中的介质片  10.7 并格林函数的二维傅立叶变换  参考文献 第11章 非均匀媒质和运动媒质  11.1 平面分层媒质的量波函数  11.2 球面分层媒质的量波函数  11.3 非均匀球形透镜  11.4 运动的各向同性媒质中的简谐场  11.5 运动媒质中与时间相关的场  11.6 充有运动媒质的矩形波导  11.7 充有运动媒质的圆柱波导  11.8 运动媒质中的无限长导电柱体  参考文献 附录  A. 量分析和并分析  B. 标量格林函数  C. 傅立叶变换和汉克尔变换  D. 积分的鞍点法和贝塞耳函数乘积的半无限积分  E. 量波函数及它们相互关系  参考文献 外国人名对照

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值