医学图像分割技术:胰腺与神经结构分割新进展
在医学影像领域,精准的器官和组织分割对于疾病诊断、治疗规划以及研究都具有至关重要的意义。本文将介绍两种不同的医学图像分割方法,分别是基于磁共振成像(MRI)的胰腺自动分割框架,以及基于超声图像的神经结构自动分割方法。
1. 胰腺自动分割框架
在MRI图像中进行胰腺自动分割是一个具有挑战性的任务。为了评估不同的自动分割方法,研究人员使用了两个重要的指标:骰子相似系数(DSC)和杰卡德指数(JI)。以下是几种不同方法的表现:
| 方法 | DSC (%) | JI (%) | 数据(大小) |
| — | — | — | — |
| Wang et al. | 65.5 ± 18.6 [2.4, 90.2] | – | CT (100) |
| Tong et al. | 71.1 ± 14.7 | 56.90 ± 15.2 | CT (150) |
| Roth et al. | 71.8 ± 10.7 [25.0, 86.9] | – | CT (82) |
| Cai et al. | 76.1 ± 8.7 [47.4, 87.1] | – | MRI (78) |
| Okada et al. | – | 46.60 | CT (28) |
| Shimizu et al. | – | 57.90 | CT (20) |
| 提出的方法 | 75.5 ± 7.0 [65.0, 86.9] | 61.2 ± 9.2 [48.1, 76.9] | MRI (20) |
从表格中可以看出,不同方法在不同数据集上的表现有所差异。提出的方法在DSC和JI
超级会员免费看
订阅专栏 解锁全文
331

被折叠的 条评论
为什么被折叠?



