Lyapunov-Krasovskii泛函中Jensen不等式和倒凸组合引理的运用

本人为研一小白,在看论文的过程中记录一下自己的学习过程和想法。

在分析时滞系统和网络化控制系统的稳定性时,我们通常需要构造Lyapunov-Krasovskii泛函来证明系统的稳定性,例如随机稳定、指数稳定等;同时我们要求系统有一个我们规定的的性能例如 H ∞ H_\infty H性能、 L 2 − L ∞ L_2-L_\infty L2L性能等。上一篇转载的文章中介绍了Lyapunov-Krasovskii泛函二重积分项求导_原理,本篇文章将介绍在证明稳定性及性能的过程中对Lyapunov-Krasovskii泛函导数进行放缩时运用的数学引理及计算推导过程。

1 Lyapunov-Krasovskii泛函举例

在一些时滞系统和网络化控制系统中,为了更真实的分析系统稳定性和性能,获得保守性更低的条件和结果,通常需要引入延迟(时滞),时滞可以是时变的也可以是固定的。随着时滞的引入,我们所寻找的Lyapunov函数不再是普通形式的,而是Lyapunov-Krasovskii泛函形式,在之前的文章中,我们给出了Lyapunov-Krasovskii泛函二重积分项求导的原理。本篇文章将讨论Lyapunov-Krasovskii泛函导数在证明稳定性和性能时的放缩问题,这里给出一些论文中的实例。
12
3
我们可以看出,论文中说运用Jensen不等式引理,得到以下结果,那么具体的计算步骤是什么,我们可以通过后续内容进行学习得知。

2 Jensen不等式

Lemma 1. 对于任意一个常数正定矩阵 M ∈ R m × m M\in \mathbb{R}^{m \times m} MRm×m M = M T M=M^T M=MT,及所有连续可微的向量函数 ω : [ a , b ] ∈ R m \omega:[a,b]\in \mathbb{R}^m ω:[a,b]Rm使得下列的积分不等式成立 ( b − a ) ∫ a b ω T ( s ) R ω ( s ) d s ≥ ( ∫ a b ω ( s ) d s ) T R ( ∫ a b ω ( s ) d s ) . (1) \begin{aligned}(b-a)\int^b_a \omega^T(s)R\omega(s) ds\geq \Bigg(\int^b_a \omega(s)ds\Bigg)^TR\Bigg(\int^b_a \omega(s)ds\Bigg)\end{aligned}.\tag{1} (ba)abωT(s)Rω(s)ds(abω(s)ds)TR(abω(s)ds).(1)这个形式是论文中给出的原始形式,在常见的论文中,我们还有以下形式 − ∫ a b ω T ( s ) R ω ( s ) d s ≤ − 1 b − a ( ∫ a b ω ( s ) d s ) T R ( ∫ a b ω ( s ) d s ) . (2) -\begin{aligned}&\int^b_a \omega^T(s)R\omega(s) ds\leq -\frac{1}{b-a}\Bigg(\int^b_a \omega(s)ds\Bigg)^TR\Bigg(\int^b_a \omega(s)ds\Bigg)\end{aligned}.\tag{2} abωT(s)Rω(s)dsba1(abω(s)ds)TR(abω(s)ds).(2) − ( b − a ) ∫ a b ω ˙ T ( s ) R ω ˙ ( s ) d s ≤ − ( ∫ a b ω ˙ ( s ) d s ) T R ( ∫ a b ω ˙ ( s ) d s ) = − [ ω ( b ) − ω ( a ) ] T R [ ω ( b ) − ω ( a ) ] . (3) \begin{aligned}-(b-a)\int^b_a \dot{\omega}^T(s)R\dot{\omega}(s) ds&\leq -\Bigg(\int^b_a \dot{\omega}(s)ds\Bigg)^TR\Bigg(\int^b_a \dot{\omega}(s)ds\Bigg) \\ &=-[\omega(b)-\omega(a)]^TR[\omega(b)-\omega(a)] \end{aligned}.\tag{3} (ba)abω˙T(s)Rω˙(s)ds(abω˙(s)ds)TR(abω˙(s)ds)=[ω(b)ω(a)]TR[ω(b)ω(a)].(3) − ∫ − τ 0 ∫ t + θ t ω T ( s ) R ω ( s ) d s ≤ − 2 τ 2 ( ∫ − τ 0 ∫ t + θ t ω ( s ) d s d θ ) T R ( ∫ − τ 0 ∫ t + θ t ω ( s ) d s d θ ) . (4) \begin{aligned}-\int^0_{-\tau}\int^t_{t+\theta} {\omega}^T(s)R{\omega}(s) ds&\leq-\frac{2}{\tau^2} \Bigg(\int^0_{-\tau}\int^t_{t+\theta} {\omega}(s)dsd\theta\Bigg)^TR\Bigg(\int^0_{-\tau}\int^t_{t+\theta} {\omega}(s)dsd\theta\Bigg)\end{aligned}.\tag{4} τ0t+θtωT(s)Rω(s)dsτ22(τ0t+θtω(s)dsdθ)TR(τ0t+θtω(s)dsdθ).(4)

Proof 1. 我们可以通过 S c h u r Schur Schur补引理来证明,我们有 [ ω T ( s ) R ω ( s ) ω T ( s ) ω ( s ) R − 1 ] ≥ 0. (5) \begin{bmatrix}\omega^T(s)R\omega(s)&\omega^T(s) \\\omega(s)&R^{-1}\end{bmatrix}\geq0.\tag{5} [ωT(s)Rω(s)ω(s)ωT(s)R1]0.(5)将式(5)从 a a a b b b进行积分 ( a ≤ s ≤ b ) (a\leq s\leq b) (asb),可得 [ ∫ a b ω T ( s ) R ω ( s ) ∫ a b ω T ( s ) ∫ a b ω ( s ) ( b − a ) R − 1 ] ≥ 0. (6) \begin{bmatrix}\int^b_a\omega^T(s)R\omega(s)&\int^b_a\omega^T(s) \\ \int^b_a\omega(s)&(b-a)R^{-1}\end{bmatrix}\geq0.\tag{6} [abωT(s)Rω(s)abω(s)abωT(s)(ba)R1]0.(6)通过对式(6)使用 S c h u r Schur Schur补引理我们可以得到不等式(1)的结果。证毕 □ \square
Proof 2. 类似于Proof 1. 我们进行式(4)的证明,对式(5)从 t + θ t+\theta t+θ t t t进行积分,这里 − τ ≤ θ ≤ 0 -\tau\leq\theta\leq0 τθ0,我们有 [ ∫ t + θ t ω T ( s ) R ω ( s ) ∫ t + θ t ω T ( s ) ∫ t + θ t ω ( s ) − θ R − 1 ] ≥ 0. (7) \begin{bmatrix}\int^t_{t+\theta}\omega^T(s)R\omega(s)&\int^t_{t+\theta}\omega^T(s) \\ \int^t_{t+\theta}\omega(s)&-\theta R^{-1}\end{bmatrix}\geq0.\tag{7} [t+θtωT(s)Rω(s)t+θtω(s)t+θtωT(s)θR1]0.(7)对式(7)从 − τ -\tau τ 0 0 0积分,我们有 [ ∫ − τ 0 ∫ t + θ t ω T ( s ) R ω ( s ) ∫ − τ 0 ∫ t + θ t ω T ( s ) ∫ − τ 0 ∫ t + θ t ω ( s ) − ∫ − τ 0 θ R − 1 ] ≥ 0. (8) \begin{bmatrix}\int^0_{-\tau}\int^t_{t+\theta}\omega^T(s)R\omega(s)&\int^0_{-\tau}\int^t_{t+\theta}\omega^T(s) \\ \int^0_{-\tau}\int^t_{t+\theta}\omega(s)&-\int^0_{-\tau}\theta R^{-1}\end{bmatrix}\geq0.\tag{8} [τ0t+θtωT(s)Rω(s)τ0t+θtω(s)τ0t+θtωT(s)τ0θR1]0.(8)我们可以看出,式(8)和式(6)等价,即可以用 S c h u r Schur Schur补引理来证明不等式(4),证明过程这里不再给出,证毕 □ \square

附: S c h u r Schur Schur补引理,读者可以根据 S c h u r Schur Schur补引理直接写出不等式(1-4)

对给定的对称矩阵 S = [ S 11 S 12 S 21 S 22 ] S=\begin{bmatrix}S_{11}&S_{12} \\ S_{21}&S_{22}\end{bmatrix} S=[S11S21S12S22],其中 S 11 S_{11} S11 r × r r \times r r×r维的,以下三个条件是等价的: S < 0 S 11 < 0 , S 22 − S 12 T S 11 − 1 S 12 < 0 S 22 < 0 , S 11 − S 12 S 22 − 1 S 12 T < 0 \begin{aligned}&S<0 \\ &S_{11}<0,S_{22}-S_{12}^TS_{11}^{-1}S_{12}<0 \\ &S_{22}<0,S_{11}-S_{12}S_{22}^{-1}S_{12}^T<0\end{aligned} S<0S11<0,S22S12TS111S12<0S22<0,S11S12S221S12T<0关于 S c h u r Schur Schur补引理的证明这里不再给出。

3 倒凸组合引理

3.1 倒数凸组合定义

Definition 1. Φ 1 , Φ 2 , ⋯   , Φ N : R m → R n \Phi_1,\Phi_2,\cdots,\Phi_N:\mathbb{R}^m \rightarrow\mathbb{R}^n Φ1,Φ2,,ΦNRmRn是给定的有限个函数,同时它们在 D ⊂ R m D\subset\mathbb{R}^m DRm上的取值为正值。那么,这些函数在集合 D D D上的倒数凸组合是如下形式的函数 1 α 1 Φ 1 + 1 α 2 Φ 2 + ⋯ + 1 α N Φ N : D → R n . (9) \frac{1}{\alpha_1}\Phi_1+\frac{1}{\alpha_2}\Phi_2+ \cdots + \frac{1}{\alpha_N}\Phi_N:D \rightarrow \mathbb{R}^n .\tag{9} α11Φ1+α21Φ2++αN1ΦNDRn.(9)其中,实数 α i > 0 , ∑ i α i = 1. \alpha_i>0,\sum_i\alpha_i=1. αi>0,iαi=1.

3.2 倒数凸组合引理

在论文中,这里的倒数凸组合引理实际上给出了标量正定函数互凸组合 Φ i \Phi_i Φi的一个下界。
Lemma 2. Φ i = f i \Phi_i=f_i Φi=fi,设 f 1 , f 2 , ⋯   , f N : D → R n f_1,f_2,\cdots,f_N:D \rightarrow \mathbb{R}^n f1,f2,,fNDRn D ⊂ R m D\subset\mathbb{R}^m DRm上的取值为正值。然后, f i f_i fi D D D上的倒数凸组合满足下面的关系 min ⁡ { α i ∣ α i > 0 , ∑ i α i = 1 } ∑ i 1 α i f i ( t ) = ∑ i f i ( t ) + max ⁡ g i , j ( t ) ∑ i ≠ j g i , j ( t ) . (10) \min_{\{\alpha_i|\alpha_i>0,\sum_i\alpha_i=1\}}\sum_i\frac{1}{\alpha_i}f_i(t)=\sum_{i}f_i(t)+\max_{g_{i,j}(t)}\sum_{i\neq j}g_{i,j}(t).\tag{10} {αiαi>0,iαi=1}miniαi1fi(t)=ifi(t)+gi,j(t)maxi=jgi,j(t).(10)这里的约束条件为 s t . { g i , j : R m → R , g j , i ( t ) ≜ g i , j ( t ) , [ f i ( t ) g i , j ( t ) g i , j ( t ) f j ( t ) ] ≥ 0 } . (11) st. \quad \Bigg\{g_{i,j}:\mathbb{R}^m\rightarrow \mathbb{R},g_{j,i}(t)\triangleq g_{i,j}(t),\begin{bmatrix}f_i(t)&g_{i,j}(t) \\ g_{i,j}(t)&f_j(t) \end{bmatrix}\geq0\Bigg\}.\tag{11} st.{gi,j:RmR,gj,i(t)gi,j(t),[fi(t)gi,j(t)gi,j(t)fj(t)]0}.(11)Proof. 对于式(11)的约束,我们可知 [ α j α i − α i α j ] T [ f i ( t ) g i , j ( t ) g i , j ( t ) f j ( t ) ] [ α j α i − α i α j ] ≥ 0. (12) \begin{bmatrix}\sqrt{\frac{\alpha_j}{\alpha_i}} \\ -\sqrt{\frac{\alpha_i}{\alpha_j}} \end{bmatrix}^T\begin{bmatrix}f_i(t)&g_{i,j}(t) \\ g_{i,j}(t)&f_j(t) \end{bmatrix}\begin{bmatrix}\sqrt{\frac{\alpha_j}{\alpha_i}} \\ -\sqrt{\frac{\alpha_i}{\alpha_j}} \end{bmatrix}\geq0.\tag{12} αiαj αjαi T[fi(t)gi,j(t)gi,j(t)fj(t)] αiαj αjαi 0.(12)对于式(12),我们可以得到下面的关系 α i α j f j ( t ) + α j α i f i ( t ) − 2 g i , j ( t ) ≥ 0 ⇒ 1 2 ( α j α i f i ( t ) + α i α j f i ( t ) ) ≥ g i , j ( t ) . (13) \frac{\alpha_i}{\alpha_j}f_j(t)+\frac{\alpha_j}{\alpha_i}f_i(t)-2g_{i,j}(t)\geq0\quad \Rightarrow\quad \frac{1}{2}\Bigg(\frac{\alpha_j}{\alpha_i}f_i(t)+\frac{\alpha_i}{\alpha_j}f_i(t)\Bigg)\geq g_{i,j}(t).\tag{13} αjαifj(t)+αiαjfi(t)2gi,j(t)021(αiαjfi(t)+αjαifi(t))gi,j(t).(13)然后,我们有 ∑ i 1 α i f i ( t ) = ∑ i α j α i f i ( t ) = ∑ i f i ( t ) + 1 2 ∑ i ≠ j ( α j α i f i ( t ) + α i α j f i ( t ) ) ≥ ∑ i f i ( t ) + ∑ i ≠ j g i , j ( t ) . (14) \begin{aligned}\sum_i\frac{1}{\alpha_i}f_i(t)&=\sum_i\frac{\alpha_j}{\alpha_i}f_i(t) \\ &=\sum_if_i(t)+\frac{1}{2}\sum_{i \neq j}\Bigg(\frac{\alpha_j}{\alpha_i}f_i(t)+\frac{\alpha_i}{\alpha_j}f_i(t)\Bigg) \\ &\geq\sum_if_i(t)+\sum_{i \neq j}g_{i,j}(t)\end{aligned}.\tag{14} iαi1fi(t)=iαiαjfi(t)=ifi(t)+21i=j(αiαjfi(t)+αjαifi(t))ifi(t)+i=jgi,j(t).(14)当等式成立时 α j = f i ( t ) ∑ j f j ( t ) , g i , j ( t ) = f i ( t ) f j ( t ) (15) \alpha_j=\frac{\sqrt{f_i(t)}}{\sum_j\sqrt{f_j(t)}},\quad g_{i,j}(t)=\sqrt{f_i(t)f_j(t)}\tag{15} αj=jfj(t) fi(t) ,gi,j(t)=fi(t)fj(t) (15)证毕 □ \square

该定理可以应用于处理时滞系统的Lyapunov-Krasovskii函数泛函的二重积分项。后续我们将通过一个实例来进行演示。

4 Lyapunov-Krasovskii泛函放缩运算实例

我们以式(3)为例,推导出Lyapunov-Krasovskii泛函二重积分项导数的放缩结果,这里为了更接近实际的控制系统,我们定义 a = t − h a=t-h a=th b = t b=t b=t t − h ≤ d t ≤ t t-h\leq d_t \leq t thdtt,我们得到
− h ∫ t − h t ω ˙ T ( s ) R ω ˙ ( s ) d s ≤ − ( ∫ t − h t ω ˙ ( s ) d s ) T R ( ∫ t − h t ω ˙ ( s ) d s ) = − [ ω ( t ) − ω ( t − h ) ] T R [ ω ( t ) − ω ( t − h ) ] . (16) \begin{aligned}-h\int^t_{t-h} \dot{\omega}^T(s)R\dot{\omega}(s) ds&\leq -\Bigg(\int^t_{t-h} \dot{\omega}(s)ds\Bigg)^TR\Bigg(\int^t_{t-h} \dot{\omega}(s)ds\Bigg) \\ &=-[\omega(t)-\omega(t-h)]^TR[\omega(t)-\omega(t-h)] \end{aligned}.\tag{16} hthtω˙T(s)Rω˙(s)ds(thtω˙(s)ds)TR(thtω˙(s)ds)=[ω(t)ω(th)]TR[ω(t)ω(th)].(16)但是通常情况下,为了获得保守性更好的结果,我们不会直接使用形如式(16)的Jensen不等式结果,而是考虑一个新的方法,即倒数凸组合引理

倒数凸组合引理的性能行为与基于积分不等式引理的方法相同,但决策变量的数量与基于Jensen不等式引理的方法相当。

为了能够简单直观的进行放缩处理的计算和推导,这里给出一个Lemma 3. 我们将通过式(16)为例进行证明。
Lemma 3. 对于给定的两个非负标量 τ ‾ , τ ˉ \underline{\tau},\bar{\tau} τ,τˉ满足 τ ‾ ≤ τ ˉ \underline{\tau}\leq\bar{\tau} ττˉ,一个标量时变函数 d t ∈ [ τ ‾ , τ ˉ ] d_t \in [\underline{\tau},\bar{\tau}] dt[τ,τˉ],一个向量值函数 ω ˙ : [ − τ ‾ , − τ ˉ ] → R n \dot{\omega}:[-\underline{\tau},-\bar{\tau}]\rightarrow \mathbb{R}^n ω˙:[τ,τˉ]Rn,存在一个常数矩阵 R = R T ∈ R n × n R=R^T\in \mathbb{R}^{n \times n} R=RTRn×n S ∈ R n × n S\in \mathbb{R}^{n \times n} SRn×n [ R S ∗ R ] ≥ 0 \begin{bmatrix}R&S \\ *&R\end{bmatrix}\geq0 [RSR]0使得下面的积分不等式成立 − ( τ ˉ − τ ‾ ) ∫ t − τ ˉ t − τ ‾ ω ˙ T ( s ) R ω ˙ ( s ) d s ≤ − ξ 1 T R ξ 1 − ξ 2 T R ξ 2 + ξ 1 T S ξ 2 + ξ 2 T S T ξ 1 (17) -(\bar{\tau}-\underline{\tau})\int^{t-\underline{\tau}}_{t-\bar{\tau}}\dot{\omega}^T(s)R\dot{\omega}(s)ds\leq-\xi_1^TR\xi_1-\xi_2^TR\xi_2+\xi_1^TS\xi_2+\xi_2^TS^T\xi_1\tag{17} (τˉτ)tτˉtτω˙T(s)Rω˙(s)dsξ1TRξ1ξ2TRξ2+ξ1TSξ2+ξ2TSTξ1(17)这里 ξ 1 = ω ( t − d t ) − ω ( t − τ ‾ ) , ξ 2 = ω ( t − τ ˉ ) − ω ( t − d t ) . \xi_1=\omega(t-d_t)-\omega(t-\underline{\tau}),\xi_2=\omega(t-\bar{\tau})-\omega(t-d_t). ξ1=ω(tdt)ω(tτ),ξ2=ω(tτˉ)ω(tdt).
Proof. d t = τ ‾ d_t=\underline{\tau} dt=τ(或者 d t = τ ˉ d_t=\bar{\tau} dt=τˉ),可以得到 ξ 1 = 0 \xi_1=0 ξ1=0(或者, ξ 2 = 0 \xi_2=0 ξ2=0)。这时式(17)将退化为Jensen不等式(Lemma 1)。因此,式(17)仍然成立。接下来我们讨论 τ ‾ < d t < τ ˉ \underline{\tau}< d_t< \bar{\tau} τ<dt<τˉ的情况,这里我们定义 ξ 3 = d t − τ ‾ τ ˉ − τ ‾ , ξ 4 = τ ˉ − d t τ ˉ − τ ‾ \xi_3=\frac{d_t-\underline{\tau}}{\bar{\tau}-\underline{\tau}},\xi_4=\frac{\bar{\tau}-d_t}{\bar{\tau}-\underline{\tau}} ξ3=τˉτdtτ,ξ4=τˉττˉdt,运用Jensen不等式,我们将得到 − ( τ ˉ − τ ‾ ) ∫ t − τ ˉ t − τ ‾ ω ˙ T ( s ) R ω ˙ ( s ) d s = − ( τ ˉ − τ ‾ ) ∫ t − d t t − τ ‾ ω ˙ T ( s ) R ω ˙ ( s ) d s − ( τ ˉ − τ ‾ ) ∫ t − τ ˉ t − d t ω ˙ T ( s ) R ω ˙ ( s ) d s ≤ − ( 1 + ξ 4 ξ 3 ) ξ 1 T R ξ 1 − ( 1 + ξ 3 ξ 4 ) ξ 2 T R ξ 2 . (18) \begin{aligned}-(\bar{\tau}-\underline{\tau})\int^{t-\underline{\tau}}_{t-\bar{\tau}}\dot{\omega}^T(s)R\dot{\omega}(s)ds&=-(\bar{\tau}-\underline{\tau})\int^{t-\underline{\tau}}_{t-d_t}\dot{\omega}^T(s)R\dot{\omega}(s)ds-(\bar{\tau}-\underline{\tau})\int^{t-d_t}_{t-\bar{\tau}}\dot{\omega}^T(s)R\dot{\omega}(s)ds \\ &\leq-(1+\frac{\xi_4}{\xi_3})\xi_1^TR\xi_1-(1+\frac{\xi_3}{\xi_4})\xi_2^TR\xi_2\end{aligned}\tag{18}. (τˉτ)tτˉtτω˙T(s)Rω˙(s)ds=(τˉτ)tdttτω˙T(s)Rω˙(s)ds(τˉτ)tτˉtdtω˙T(s)Rω˙(s)ds(1+ξ3ξ4)ξ1TRξ1(1+ξ4ξ3)ξ2TRξ2.(18)这里用倒数凸组合的证明方法,对于 [ R S ∗ R ] ≥ 0 \begin{bmatrix}R&S \\ *&R\end{bmatrix}\geq0 [RSR]0,我们有 [ ξ 4 ξ 3 ξ 1 ξ 3 ξ 4 ξ 2 ] T [ R S ∗ R ] [ ξ 4 ξ 3 ξ 1 ξ 3 ξ 4 ξ 2 ] ≥ 0. (19) \begin{bmatrix}\sqrt{\frac{\xi_4}{\xi_3}}\xi_1\\ \sqrt{\frac{\xi_3}{\xi_4}}\xi_2\end{bmatrix}^T\begin{bmatrix}R&S \\ *&R\end{bmatrix}\begin{bmatrix}\sqrt{\frac{\xi_4}{\xi_3}}\xi_1\\ \sqrt{\frac{\xi_3}{\xi_4}}\xi_2\end{bmatrix}\geq0.\tag{19} ξ3ξ4 ξ1ξ4ξ3 ξ2 T[RSR] ξ3ξ4 ξ1ξ4ξ3 ξ2 0.(19)计算式(19)并等价改写为 − ξ 4 ξ 3 ξ 1 T R ξ 1 − ξ 3 ξ 4 ξ 1 T R ξ 2 ≤ ξ 1 T S ξ 2 + ξ 2 T S T ξ 1 (20) -\frac{\xi_4}{\xi_3}\xi_1^TR\xi_1-\frac{\xi_3}{\xi_4}\xi_1^TR\xi_2\leq \xi_1^TS\xi_2+\xi_2^TS^T\xi_1\tag{20} ξ3ξ4ξ1TRξ1ξ4ξ3ξ1TRξ2ξ1TSξ2+ξ2TSTξ1(20)这里我们合并式(18)和式(20)就会得到式(17),证毕 □ \square
这里我们给出一般计算的矩阵形式,这更有利于我们进行推导和计算.
− ( τ ˉ − τ ‾ ) ∫ t − τ ˉ t − τ ‾ ω ˙ T ( s ) R ω ˙ ( s ) d s ≤ − ξ 1 T R ξ 1 − ξ 2 T R ξ 2 + ξ 1 T S ξ 2 + ξ 2 T S T ξ 1 = − [ ω ( t − d t ) − ω ( t − τ ‾ ) ] T R [ ω ( t − d t ) − ω ( t − τ ‾ ) ] − [ ω ( t − τ ˉ ) − ω ( t − d t ) ] T R [ ω ( t − τ ˉ ) − ω ( t − d t ) ] + [ ω ( t − d t ) − ω ( t − τ ‾ ) ] T S [ ω ( t − τ ˉ ) − ω ( t − d t ) ] + [ ω ( t − τ ˉ ) − ω ( t − d t ) ] T S T [ ω ( t − d t ) − ω ( t − τ ‾ ) ] (21) \begin{aligned}-(\bar{\tau}-\underline{\tau})\int^{t-\underline{\tau}}_{t-\bar{\tau}}\dot{\omega}^T(s)R\dot{\omega}(s)ds\leq&-\xi_1^TR\xi_1-\xi_2^TR\xi_2+\xi_1^TS\xi_2+\xi_2^TS^T\xi_1 \\ = &-[\omega(t-d_t)-\omega(t-\underline{\tau})]^TR[\omega(t-d_t)-\omega(t-\underline{\tau})] \\&-[\omega(t-\bar{\tau})-\omega(t-d_t)]^TR[\omega(t-\bar{\tau})-\omega(t-d_t)] \\&+[\omega(t-d_t)-\omega(t-\underline{\tau})]^TS[\omega(t-\bar{\tau})-\omega(t-d_t)] \\ &+[\omega(t-\bar{\tau})-\omega(t-d_t)]^TS^T[\omega(t-d_t)-\omega(t-\underline{\tau})]\end{aligned}\tag{21} (τˉτ)tτˉtτω˙T(s)Rω˙(s)ds=ξ1TRξ1ξ2TRξ2+ξ1TSξ2+ξ2TSTξ1[ω(tdt)ω(tτ)]TR[ω(tdt)ω(tτ)][ω(tτˉ)ω(tdt)]TR[ω(tτˉ)ω(tdt)]+[ω(tdt)ω(tτ)]TS[ω(tτˉ)ω(tdt)]+[ω(tτˉ)ω(tdt)]TST[ω(tdt)ω(tτ)](21)对式(21)进行整理,我们得到 − ( τ ˉ − τ ‾ ) ∫ t − τ ˉ t − τ ‾ ω ˙ T ( s ) R ω ˙ ( s ) d s ≤ Ξ T ( t ) Θ Ξ ( t ) = Ξ T ( t ) [ − R ∗ ∗ R − S − 2 R + S + S T ∗ S T R − S T − R ] Ξ ( t ) (22) -(\bar{\tau}-\underline{\tau})\int^{t-\underline{\tau}}_{t-\bar{\tau}}\dot{\omega}^T(s)R\dot{\omega}(s)ds\leq \Xi^T(t)\Theta\Xi(t)=\Xi^T(t)\begin{bmatrix}-R&*&* \\ R-S&-2R+S+S^T&*\\ S^T&R-S^T&-R\end{bmatrix}\Xi(t)\tag{22} (τˉτ)tτˉtτω˙T(s)Rω˙(s)dsΞT(t)ΘΞ(t)=ΞT(t) RRSST2R+S+STRSTR Ξ(t)(22)这里 Ξ ( t ) = c o l { ω ( t − τ ‾ ) , ω ( t − d t ) , ω ( t − τ ˉ ) } . \Xi(t)=col\{\omega(t-\underline{\tau}),\omega(t-d_t),\omega(t-\bar{\tau})\}. Ξ(t)=col{ω(tτ),ω(tdt),ω(tτˉ)}.
证明稳定性及性能的过程中对Lyapunov-Krasovskii泛函导数进行放缩时运用的数学引理及计算推导过程至此结束!


创作不易,希望大家支持,多多点赞收藏!!!!非常感谢!!!!

参考文献:

Jensen不等式提出论文.
Reciprocally convex approach to stability of systems with time-varying delays.
Distributed event-triggered H ∞ H_\infty H filtering over sensor networks with communication delays.
Delay-dependent stability and stabilization of neutral time-delay systems.

参考书籍和资料:

[俞立.鲁棒控制——线性矩阵不等式[M]. 北京:清华大学出版社, 2002.]
时滞系统—3.4 时滞相关稳定性条件.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊羊羊ox

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值