Python从零开始进行AIGC大模型训练与推理

        本专栏将详细介绍从零开始进行AIGC大模型训练与推理(Python),包括文本生成(GPT系列)和图片生成(Stable Diffusion系列)等,初步计划从以下提纲逐步进行博文分享,欢迎关注。

1 AIGC(人工智能生成)技术背景与发展

(1)《解密AIGC:人工智能生成内容技术的优势和未来发展趋势》,地址为“解密AIGC:人工智能生成内容技术的优势和未来发展趋势_Coding的叶子的博客-CSDN博客”。

2 Docker深度学习环境搭建

(1)《Docker AIGC等大模型深度学习环境搭建(完整详细版)》,地址为“解密AIGC:人工智能生成内容技术的优势和未来发展趋势_Coding的叶子的博客-CSDN博客”。

3 Colossal AI大模型训练与推理框架搭建

(1)《Colossal-AI环境配置与测试验证》,地址为“GPT系列训练与部署——Colossal-AI环境配置与测试验证_Coding的叶子的博客-CSDN博客”。

4 GPT2原理介绍、训练、推理、部署

(1)《GPT2环境配置与模型训练—GPT系列训练与部署》,地址为“GPT系列训练与部署——GPT2环境配置与模型训练_Coding的叶子的博客-CSDN博客”。

(2)《ColossalAI GPT2分布式训练调试配置—GPT系列训练与部署》,地址为“ColossalAI GPT2分布式训练调试配置—GPT系列训练与部署_Coding的叶子的博客-CSDN博客”。

(3)《详细理解GPT2模型结构及其训练过程—GPT系列训练与部署》,地址为“详细理解GPT2模型结构及其训练过程—GPT系列训练与部署_Coding的叶子的博客-CSDN博客”。

5 GPT3原理介绍、训练、推理、部署

6 ChatGPT原理介绍、训练、推理、部署

7 ChatGLM原理介绍、训练、推理、部署

(1)《ChatGPT平替-ChatGLM环境搭建与部署运行》,地址为“ChatGPT平替-ChatGLM环境搭建与部署运行_Coding的叶子的博客-CSDN博客”。

(2)《ChatGPT平替- ChatGLM多用户并行访问部署》,地址为“ChatGPT平替- ChatGLM多用户并行访问部署_Coding的叶子的博客-CSDN博客”。

8 Stable Diffusion原理介绍、训练、推理、部署

(1)《AI图片生成Stable Diffusion环境搭建与运行》,地址为“AI图片生成Stable Diffusion环境搭建与运行_Coding的叶子的博客-CSDN博客”。

(2)《AI图片生成Stable Diffusion参数及使用方式详细介绍_Coding的叶子的博客-CSDN博客》,地址为“AI图片生成Stable Diffusion参数及使用方式详细介绍_Coding的叶子的博客-CSDN博客”。

(3)《图生图—AI图片生成Stable Diffusion参数及使用方式详细介绍》,地址为“图生图—AI图片生成Stable Diffusion参数及使用方式详细介绍_Coding的叶子的博客-CSDN博客”。

9 ControlNet原理介绍、训练、推理、部署

        实际分享内容顺序可能与提纲有所差异,但内容不局限于上述提纲,可能会增加更多AIGC模型的介绍。每次更新将在下方公众号内进行同步。

### Ollama大型模型训练流程详解 #### 初始化阶段 在Ollama大模型训练初期,嵌入权重会初始化为随机值作为初步步骤。这种初始化作为LLM学习过程的起点[^3]。 #### 数据准备 大规模多样化的训练数据集对于模型性能至关重要。这些数据集不仅帮助模型掌握语言语法、语义上下文理解能力,还使得其能够应对一些需要广泛知识的任务[^1]。 #### 构建位置嵌入 为了使模型具备处理序列化输入的能力,“context_length”参数定义了模型能接受的最大输入词元数量。这一特性通过位置嵌入机制得以实现,允许模型有效地捕捉到不同长度文本中的模式结构特点[^2]。 #### 训练优化 随着训练进程的发展,在第五章节中将会详细介绍如何进一步调整并优化之前提到过的嵌入权重。此过程中涉及的技术手段旨在提高模型的整体泛化能力预测精度。 ```python # 假设这是用于加载预处理后的训练数据函数 def load_preprocessed_data(): pass # 定义一个简单的神经网络架构来表示OLLAMA模型的核心组件 class SimpleModel(nn.Module): def __init__(self, vocab_size, embed_dim, context_len): super(SimpleModel, self).__init__() self.embedding = nn.Embedding(vocab_size, embed_dim) self.context_len = context_len def forward(self, inputs): embedded_inputs = self.embedding(inputs) # 这里省略了具体的前向传播逻辑... return outputs # 创建实例对象并指定超参数 model = SimpleModel(vocab_size=..., embed_dim=..., context_len=...) # 开始训练循环 for epoch in range(num_epochs): for batch in batches: optimizer.zero_grad() output = model(batch['input']) loss = criterion(output, batch['target']) loss.backward() optimizer.step() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coding的叶子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值