wavlm预训练模型的使用

wavlm

参考代码:

transformers中已经有封装:

https://huggingface.co/docs/transformers/model_doc/wavlm#transformers.WavLMForXVector

一个示例:

from transformers import WavLMConfig, WavLMModel

# Initializing a WavLM facebook/wavlm-base-960h style configuration
configuration = WavLMConfig()

# Initializing a model (with random weights) from the facebook/wavlm-base-960h style configuration
model = WavLMModel(configuration)

# Accessing the model configuration
configuration = model.config
from transformers import AutoProcessor, WavLMModel
import torch
from datasets import load_dataset

dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
dataset = dataset.sort("id")
sampling_rate = dataset.features["audio"].sampling_rate

processor = AutoProcessor.from_pretrained("patrickvonplaten/wavlm-libri-clean-100h-base-plus")
model = WavLMModel.from_pretrained("patrickvonplaten/wavlm-libri-clean-100h-base-plus")

# audio file is decoded on the fly
inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
with torch.no_grad():
    outputs = model(**inputs)

last_hidden_states = outputs.last_hidden_state
list(last_hidden_states.shape)
预训练模型下载地址:

https://huggingface.co/models?other=wavlm

微软的原始仓库:

https://github.com/microsoft/unilm/tree/master/wavlm

### 如何下载 WavLM Base Plus 模型 要获取并下载 WavLM Base Plus 预训练模型,可以按照以下方法操作: #### 使用 Hugging Face 平台 Hugging Face 是一个广泛使用的开源平台,提供了大量预训练模型资源。WavLM 的多个变体版本(包括 Base 和 Large)都可以通过该平台访问。 可以通过命令行工具 `transformers` 库来安装和加载模型[^1]。以下是具体实现方式: ```bash pip install transformers ``` 接着,在 Python 脚本中可以直接加载 WavLM Base Plus 模型及其对应的权重文件: ```python from transformers import Wav2Vec2Processor, WavLMModel import torch processor = Wav2Vec2Processor.from_pretrained("microsoft/wavlm-base-plus") # 加载处理器 model = WavLMModel.from_pretrained("microsoft/wavlm-base-plus") # 加载模型 ``` 上述代码会自动从 Hugging Face Model Hub 下载指定的 WavLM Base Plus 模型以及其配置文件到本地缓存目录。如果需要手动管理这些文件的位置,可以在环境变量中设置 `TRANSFORMERS_CACHE` 来更改默认存储路径[^2]。 #### 手动下载模型文件 对于某些特殊需求或者网络受限的情况,也可以选择手动下载模型文件。进入 [Hugging Face Models 页面](https://huggingface.co/microsoft/wavlm-base-plus),找到对应模型页面后点击右侧的 **Download** 按钮即可保存压缩包至本地磁盘。解压后的文件通常包含 PyTorch 或 TensorFlow 版本的权重参数以及其他必要的元数据信息。 需要注意的是,无论是采用自动化脚本还是人工干预的方式完成下载过程之后,都应确保所依赖的相关库已正确安装完毕以便后续能够顺利运行程序逻辑。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值