[caffe]深度学习之图像分类模型Batch Normalization[BN-inception]解读

一、简介


如果将googlenet称之为google家的inception v1的话,其Batch Normalization(http://arxiv.org/pdf/1502.03167v3.pdf)文章讲的就是BN-inception v1。

它不是网络本身本质上的内容修改,而是为了将conv层的输出做normalization以使得下一层的更新能够更快,更准确。


二、网络分析


caffe官方将BN层拆成两个层来实验,一个是https://github.com/BVLC/caffe/blob/master/include/caffe/layers/batch_norm_layer.hpp

另外一个是https://github.com/BVLC/caffe/blob/master/include/caffe/layers/scale_layer.hpp

其具体使用方法可以参考:https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt

中的BatchNormScale


BN-inceptionv1训练速度较原googlenet快了14倍,在imagenet分类问题的top5上达到4.8%,超过了人类标注top5准确率

基于深度学习的计算机视觉:原理与实践(上部)

02-19
本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。 基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。 本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。 通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。 本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。 本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值