64、地理加权回归模型在城市基础设施影响研究中的应用

地理加权回归模型在城市基础设施影响研究中的应用

1. 引言

土地的转变会对物理和功能系统产生影响,进而产生外部性,改变人们对特定地点的认知。这些影响,特别是城市质量方面的变化,会影响社会、经济和环境干预的成效。为了理解城市质量的认知并确定有助于其定义的要素,城市基础设施正越来越多地接受评估和定量测量。

在城市领域,多年来应用的估算方法能够量化土地转变带来的收益或成本的货币价值,主要是通过利用对私人房产市场价值的影响。其中,享乐价格法(HPM)是最常用的技术之一。该方法基于房产价值与结构和外部特征所赋予的效用相关的假设,将房产总价分解为能决定其整体价值的特征的边际价格。

本研究聚焦于评估城市规划政策对新加坡多户住宅市场的影响,运用地理加权回归(GWR)和多尺度地理加权回归(MGWR)模型来研究房产特征在结构和可达性方面的空间异质性。

2. 研究背景

许多研究采用HPM来探究房产价格的决定因素。然而,基于普通最小二乘法(OLS)的传统模型存在局限性,因为它无法明确考虑地理区位关系,如空间联系。为克服这一局限,学者们提出了考虑交易之间依赖关系和空间异质性的新模型,如GWR。

GWR在房地产市场分析中有一定应用,例如用于识别同质区域、确定地理位置对房产市场价值的边际贡献等。但GWR方法也存在不足,它使用单一带宽来校准模型,假设所有协变量的带宽恒定,即关系在相同地理尺度上变化。此外,GWR模型中存在异常值、多重共线性和空间自相关会导致估计不稳定,且缺乏测量多重共线性的诊断工具。为解决这些问题,Fotheringham等人提出了比GWR更通用的MGWR模型,该模型假设每个协变量在空间上的变化不同。

3. 地
内容概要:本文围绕基于FFT算法的MATLAB傅里叶级数3D可视化展开研究,结合Matlab代码实现信号处理中的频域分析与三维图形展示,旨在通过快速傅里叶变换(FFT)将时域信号转换为频域特征,并利用三维可视化技术直观呈现周期信号的频谱结构。文中可能涵盖傅里叶级数的数学原理、FFT算法的实现流程、Matlab编程细节以及3D绘图的技术方法,帮助读者深入理解信号频域特性及其可视化表达。此外,文档还列举了大量相关的科研仿真项目,如故障诊断、路径规划、优化算法等,体现出该研究在工程与科研领域的广泛应用背景。; 适合人群:具备一定Matlab编程基础和信号处理知识的高校学生基于FFT算法的MTALAB傅里叶级数3D可视化研究(Matlab代码实现)、科研人员及工程技术人员,尤其适用于从事信号分析、故障诊断或可视化研究的相关从业者; 使用场景及目标:①掌握FFT在Matlab中的实现方式及其在信号频谱分析中的应用;②学习如何将傅里叶级数结果进行3D可视化以增强数据分析的直观性;③为后续开展机械故障诊断、电力系统分析、通信信号处理等领域的研究提供技术参考与代码基础; 阅读建议:建议读者结合文中提供的Matlab代码进行实际操作,逐步调试并理解每一步的信号变换与图形绘制逻辑,同时可参考附带的网盘资源获取完整代码示例和其他相关仿真模型,提升实践能力与科研效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值