- 博客(15)
- 收藏
- 关注
原创 机器学习+城市规划第十五期:时空地理加权回归(STGWR)
时空地理加权回归(STGWR)是在传统地理加权回归(GWR)的基础上发展而来的,它将空间和时间两大因素结合起来。在STGWR模型中,数据不仅根据空间位置进行加权,还根据时间戳进行加权,使得模型能够同时反映出空间异质性和时间动态性。空间加权:通过地理位置的空间加权,考虑不同地点的数据对回归结果的影响程度。时间加权:在考虑时间维度时,模型会对不同时间段的数据加以区分,使得模型能捕捉到时间变化对规划任务的影响。这种方法结合了时间与空间的变化规律,能够使得模型对不同时间点、不同地理位置的数据做出动态调整和反应。
2025-06-07 02:34:55
958
原创 机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
通过使用地理加权聚类和半参数地理加权回归,我们可以有效地考虑到地理空间上的差异性。在城市规划中,这意味着我们可以为不同区域制定更为精准的规划方案,充分利用地理特征来优化资源分配和决策支持。通过这种方法,我们实现了具有不同区域带宽的个性化规划任务,让城市规划更加科学和合理。希望大家通过本篇博客,能够深入理解并掌握这些技术,运用在实际的城市规划任务中,提升规划的精准度与效果!原创声明:本教程由课题组内部教学使用,利用CSDN平台记录,不进行任何商业盈利。
2025-06-07 02:33:47
753
原创 机器学习+城市规划第十三期:XGBoost的地理加权改进,利用树模型实现更精准的地理加权回归
在这一小节中,我们使用SHAP值来分析Wind speed特征对模型预测的贡献,并通过散点图进行可视化。通过结合 SHAP 值与地理位置,我们能够深入理解每个特征在不同地区对预测结果的影响,从而为城市规划提供更具解释力的决策依据。
2025-06-07 02:33:11
1008
原创 机器学习+城市规划第十二期:利用SHAP来分析GWR的回归过程
随着城市化进程的不断推进,城市规划需要依赖大量的数据分析和建模来实现更加精细化、精准化的决策。地理加权回归(GWR)作为空间数据分析中的一种重要方法,已经被广泛应用于城市规划领域。GWR通过考虑空间异质性,能够揭示出每个地理位置的局部回归关系,进而帮助我们更好地理解城市内部的空间结构和特征。在实际应用中,如何理解模型的预测结果和每个特征对模型输出的贡献是至关重要的。
2025-06-07 02:32:28
1037
原创 机器学习+城市规划第十一期:地理加权回归(GWR)空间可视化实战:三张地图一目了然!
可视化图作用推荐色带GWR_coef看变量空间影响coolwarmGWR_resid看预测误差方向bwrlocal_R2看模型拟合能力YlGnBu空间分析的核心不只是建模,而是通过可视化让空间变得可感知、可沟通、可决策。在城市规划、空间回归、空间经济等领域,不妨用 GWR + 可视化,一图胜千言!@原创声明:本教程由课题组内部教学使用,利用CSDN平台记录,不进行任何商业盈利。
2025-05-15 22:35:31
663
原创 机器学习+城市规划第十期:城市规划中的多尺度地理加权回归
GWR(Geographically Weighted Regression)允许每个地理位置上的回归系数不同,适合建模空间异质性。yiβ0uivi∑kβkuivixikεiyiβ0uivik∑βkuivixikεi其中,uivi(u_i, v_i)uivi是地理坐标,βk\beta_kβk是局部回归系数。🔍。
2025-05-15 22:18:01
782
原创 机器学习 + 城市规划第九期:地理加权回归(GWR)算法的应用
是一种局部回归模型,它允许解释变量的回归系数在地理空间中发生变化。也就是说,它假设城市空间是“多样”的,而不是“一刀切”的。模型假设适用线性回归所有区域参数相同(全局)整体趋势建模GWR每个位置参数不同(局部回归)空间异质建模我们使用封装函数自动保存:封装包名称为"""保存 GWR 模型结果摘要为两个 CSV 文件:1. {prefix}_model_summary.csv - 模型整体指标2. {prefix}_parameter_summary.csv - 各变量参数统计。
2025-05-08 20:30:09
1377
原创 机器学习+城市规划第八期:地理加权规划类模型综述
模型名称特点/功能适用场景GWR局部回归基础空间异质性探索半参数回归 / 鲁棒回归固定变量处理 / 异常值影响较大MGWR多尺度建模各变量空间影响范围不同GWGLM广义线性扩展非正态响应变量GWEN正则化+变量选择高维建模、选择变量不确定性分析决策分析需置信度ST-GWR时空建模动态时空变化过程考虑空间误差/滞后项自相关显著问题Panel GWR面板数据处理多期空间分析FGWR函数型变量建模遥感、连续时间特征。
2025-05-07 17:05:29
1124
原创 机器学习+城市规划 第七期:地理空间密度聚类与地理空间加权密度聚类(含聚类区块与地图可视化)
如果某个点在一定距离(eps)内有足够多的邻居(),就将这些点归为一类支持识别任意形状的聚类能自动识别噪声点(cluster = -1)在地理空间场景中,我们通常使用**地球弧度距离(Haversine)**来计算点之间的距离。设计点实现方式加权处理用.repeat()模拟空间影响权重球面距离haversine+ 弧度转换噪声识别可视化区分用颜色显示簇,用点大小表示严重度模块内容DBSCAN基础空间密度聚类地理加权 DBSCAN考虑事故严重度影响的权重聚类区块可视化。
2025-03-28 17:57:08
1062
原创 机器学习+城市规划 第六期:利用 SHAP 实现空间地理可视化 —— XGBoost 与 GeoPandas 的结合实战
机器学习+城市规划 第六期:利用 SHAP 实现空间地理可视化 —— XGBoost 与 GeoPandas 的结合实战
2025-03-22 13:24:48
1401
原创 机器学习+城市规划第四期:XGB-SHAP框架连续变量回归实战
通过本期教程,我们学习了如何使用XGBoost回归模型和SHAP框架进行连续变量的回归任务。我们通过SHAP值可视化分析了各个特征对模型预测结果的贡献,同时深入理解了特征之间的交互作用。掌握这些技术后,我们可以更好地解释回归模型的预测结果,并为城市规划等领域的决策提供数据支持。原创声明:本教程由课题组内部教学使用,利用CSDN平台记录,不进行任何商业盈利。
2025-02-21 22:12:09
1976
1
原创 机器学习+城市规划第三期:XGBoost-SHAP分类模型实战
在原本的XGB模型中,我们利用的是softmax激活函数,他的原理是利用分类标签来进行的。然而对于SHAP来说,依照变量选择的概率设置,因此我们需要选择softprob激活函数,计算多分类中样本特征的选择概率,因此需要重新构建XGB模型。# XGB概率输出# XGBoost 初始化设置params = {'objective': 'multi:softprob', # 多分类类别概率'num_class': 4, # **三分类任务**'seed': 0,# 训练模型# 进行预测。
2025-02-12 23:29:05
2400
4
原创 机器学习+城市规划第二期:XGBoost-SHAP模型学习与论文解读
深入了解城市化背景下地表温度的空间变化趋势及其驱动机制是制定有效的城市热岛效应缓解策略的前提。本研究以中国高密度城市深圳的建成区为分析单元。利用多源数据集计算了44个环境特征指标,涵盖4类。为了综合分析各环境特征指标对地表温度和空间异质性的影响,构建了MLR、XGBoost和MGWR模型。在此基础上,利用SHAP方法分析了各变量之间的非线性关系。结果表明,MGWR和XGBoost模型的预测效果明显优于MLR模型。森林覆盖率、平均高程、NDVI、额面积指数和建筑高度标准差是影响地表温度的主要因素。
2025-02-12 19:38:48
2343
原创 机器学习+城市规划第一期:基础环境配置与软件安装
本次为第一次课程,本次课的目的是让大家学会安装和使用PyCharm,Anaconda,同时安装Python虚拟环境。
2025-02-09 20:51:01
1109
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人