Windows启用Win32长路径取消MAX_PATH=260个字符的本地路径最大长度限制

Windows系统传统上对文件路径长度有限制,最多260个字符。但在Windows Server 2016和更高版本中,此限制可扩展到约32000个字符。要启用长路径支持,可以通过修改注册表或组策略。本文介绍了两种启用方法,帮助开发者在Python等场景中处理长路径问题。
摘要由CSDN通过智能技术生成

历史Windows的本地路径长度限制为MAX_PATH=260个字符,如果文件路径超过该最大长度,将导致使用问题。

在最新版本的Windows中(Windows Server 2016、Windows 10及更高的版本),此限制已经可以扩展到大约32000个字符,需要修改系统配置打开才能生效。

尤其是使用python时,容易出现超过260个字符的最大长度限制。

启用Windows超长路径配置方法如下:

方法1:通过修改注册表开启
Win+R 输入 regedit,打开注册表编辑器,编辑:
计算机\HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\FileSystem
DWORD参数名 LongPathsEnabled 的默认值为十六进制的0,修改成1

方法2:通过修改组策略配置开启
Win+R 输入 gpedit.msc,打开本地组策略编辑器
计算机配置>管理模板>系统>文件系统,找到“启用Win32长路径”并双击打开配置,修改为”已启用”

这段代码主要是为了导入并配置图像匹配模型。下面是每一句的注释: 1. sys.path.append('/kaggle/input'):将/kaggle/input目录添加到系统路径中,以便能够导入该目录下的模块。 2. sys.path.append('/tmp'):将/tmp目录添加到系统路径中,以便能够导入该目录下的模块。 3. from imc23superglue.models.matching import Matching:从imc23superglue.models.matching模块中导入Matching类,用于执行图像匹配任务。 4. INPUT_ROOT = '/kaggle/input/image-matching-challenge-2023':设置输入数据的根目录。 5. DATA_ROOT = '/kaggle/data':设置数据处理后的根目录。 6. OUTPUT_ROOT = '/kaggle/working':设置输出结果的根目录。 7. DEBUG = False:设置是否启用调试模式。 8. datasets_scenes = []:创建一个空列表,用于存储数据集和场景。 9. sample_submission_df = pd.read_csv(f"{INPUT_ROOT}/sample_submission.csv"):读取样本提交文件,并将其存储为Pandas数据帧。 10. for _, r in sample_submission_df[['dataset', 'scene']].iterrows()::遍历样本提交数据帧中的每一行。 11. ds = f"{r.dataset}/{r.scene}":获取当前行的数据集和场景,并将它们合并为一个字符串。 12. if ds not in datasets_scenes::如果当前数据集和场景的字符串不在列表中,则执行以下操作。 13. datasets_scenes.append(ds):将当前数据集和场景的字符串添加到列表中。 14. matching_name = 'SuperGlue':设置图像匹配模型的名称为SuperGlue。 15. image_sizes = [1088]:设置图像的大小为1088像素。 16. extra_matcher = None:设置额外的匹配器为None。 17. extra_image_sizes = []:设置额外的图像大小列表为空。 18. USE_ROI = False:设置是否使用感兴趣区域(ROI)为False。 19. ROI_SIZE = 1024:设置ROI的大小为1024像素。 20. sim_th = None:设置相似度阈值为None。 21. n_matches = 100:设置最大匹配数为100。 22. num_exhaustives = 7:设置穷举次数为7。 23. thresh_exhaustives = 3:设置穷举阈值为3。 24. matching_config = {...}:创建一个字典,其中包含超级点(SuperPoint)和超级匹配(SuperGlue)的配置参数。 25. matching_model = Matching(matching_config).cuda().half().eval():创建一个图像匹配模型对象,使用上述配置参数,并将其迁移到GPU上。最后,将其设置为半精度模式,并将其设置为评估模式。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sunny05296

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值