Sunny.Xia的深度学习(四)MMOE多任务学习模型实战演练

本文介绍了MMOE多任务学习模型的原理和结构,重点在于模型(c)的专家网络和门控网络。MMOE模型通过多个独立的专家子网络和门控网络为每个任务分配权重,实现任务间的协同学习。提供了代码实现,并指出测试样例的构造和运行环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本专栏文章会在本博客知乎专栏——Sunny.Xia的深度学习同步更新,对于评论博主若未能够及时回复的,可以知乎私信。未经本人允许,请勿转载,谢谢。

一、什么是MMOE?

三张图分别是多任务模型的不同结构,具体介绍可以参见多任务学习之MMOE模型,该文章里也提供了一个简单的demo助于读者了解,很详细就不过多赘述了。

论文地址:https://github.com/ruozhichen/deep_learning_papers/tree/master/pctr

模型(c)即是本文所要介绍的MMOE模型,图中的三个Expert可以理解为相互独立的三个子网络,Tower A和Tower B即为两个任务。三个Expert的结果会通过加权和作为Tower的输入,而权重则是由Gate来提供。相比图(b)区别就在于,这里每个任务都有自己的Gate,输出各个Expert的权重大小。整个模型表达式如下所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值