TensorFlow-tf.GPUOptions()

本文介绍了如何使用TensorFlow的tf.GPUOptions和tf.ConfigProto来管理GPU内存。通过tf.GPUOptions可以限制每个GPU进程的显存使用比例,而tf.ConfigProto则用于在创建session时配置参数。文章详细展示了设置GPU内存限制的代码示例。
摘要由CSDN通过智能技术生成

1.tf.GPUOptions()

tf.GPUOptions()主要用于tensorflow的训练。

tensorflow训练时默认占用所有GPU的显存。深度学习代码运行时往往出现多个GPU显存被占满清理。

在构造tf.Session()时可通过tf.GPUOptions作为可选配置参数的一部分来显示地指定需要分配的显存比例。

通常以下代码是成对儿出现的:

gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
    sess=tf.Session(config=tf.ConfigProto(gpu_options=gpu_options
TensorFlow-DirectML 是一个使用 DirectML API 在 Windows 上运行 TensorFlow 的后端。它支持在 NVIDIA、AMD 和 Intel 显卡上运行,但是需要使用 Windows 10 20H1 及以上的版本。以下是 TensorFlow-DirectML 的安装和使用过程: 1. 安装 TensorFlow-DirectML: 可以通过 pip 安装最新版本的 TensorFlow-DirectML: ``` pip install tensorflow-directml ``` 2. 确认显卡支持 DirectML: 要运行 TensorFlow-DirectML,您需要一张支持 DirectML 的显卡。您可以在命令行中输入以下命令来检查您的显卡是否支持 DirectML: ``` dxcapsviewer.exe ``` 3. 配置 TensorFlow-DirectML: 在使用 TensorFlow-DirectML 之前,您需要设置以下环境变量: ``` set TF_DML_VISIBLE_DEVICES=0 set TF_DML_AUTO_MIXED_PRECISION=1 ``` 其中,`TF_DML_VISIBLE_DEVICES` 变量指定要使用的显卡的编号,`TF_DML_AUTO_MIXED_PRECISION` 变量开启自动混合精度。 4. 在 TensorFlow 中使用 TensorFlow-DirectML: 要在 TensorFlow 中使用 TensorFlow-DirectML,您需要将后端设置为 `directml`,如下所示: ```python import tensorflow as tf tf.keras.backend.set_image_data_format('channels_last') tf.keras.backend.set_session(tf.Session(config=tf.ConfigProto( gpu_options=tf.GPUOptions(allow_growth=True), allow_soft_placement=True, log_device_placement=False))) tf.keras.backend.set_floatx('float32') tf.keras.backend.set_epsilon(1e-8) tf.keras.backend.set_learning_phase(True) tf.keras.backend.set_backend('directml') ``` 在设置后端后,您可以使用 TensorFlow 的常规 API 运行模型。 注意:TensorFlow-DirectML 目前仅支持 TensorFlow 2.3 及以上版本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值