VGG in TensorFlow

原文链接:https://www.cs.toronto.edu/~frossard/post/vgg16/

VGG:Visual Graphics Generator 视觉图形生成器

Files
文件:

•   Model weights - vgg16_weights.npz
•   TensorFlow model - vgg16.py
•   Class names - imagenet_classes.py
•   Example input - laska.png

上述四个文件下载链接如下:
https://www.cs.toronto.edu/~frossard/vgg16/vgg16_weights.npz

https://www.cs.toronto.edu/~frossard/vgg16/vgg16.py

https://www.cs.toronto.edu/~frossard/vgg16/imagenet_classes.py

https://www.cs.toronto.edu/~frossard/vgg16/laska.png

To test run it, download all files to the same folder and run python vgg16.py
若要测试运行它,请将所有文件下载到同一文件夹并运行命令。

Introduction
介绍

Very Deep Convolutional Networks for Large-Scale Image Recognition
https://arxiv.org/abs/1409.1556

ImageNet
http://image-net.org/

Caffe to TensorFlow
https://github.com/ethereon/caffe-tensorflow

VGG是牛津大学K. Simonyan和A. Zisserman提出的一种卷积神经网络模型,用于“大规模图像识别的深度卷积网络”。该模型在ImageNet中达到92.7%的top-5测试精度,ImageNet是属于1000个类的1400万个图像的数据集。

在这个简短的帖子中,我们提供了VGG16的实现和从原来的Caffe模型转换为TensorFlow的权重。

weasel

Architecture
结构

VGG16结构图如下

VGG16结构图

我们在TensorFlow文件中的vgg16.py进行编码。注意,我们包括一个预处理层,该层采用具有0~255范围内的像素值的RGB图像,并减去平均图像值(在整个ImageNet训练集上计算)。

Weights
权重

我们使用作者的GitHub配置文件使用专门的工具来转换CAFE权重。进行了一些后处理,以确保模型符合TensorFlow标准。最后,我们在vgg16_weights.npz中得到了可用的权重。

Class Names
类名

为了将模型的输出与类名相关联,我们可以在 imagenet_classes.py 中使用映射。

Future Content
未来内容

我们鼓励您熟悉这个模型,因为它被广泛使用,并且将是未来知识转移的基础,卷积神经网络的反向传播和其他有趣的话题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值