原文链接:https://www.cs.toronto.edu/~frossard/post/vgg16/
VGG:Visual Graphics Generator 视觉图形生成器
Files
文件:
• Model weights - vgg16_weights.npz
• TensorFlow model - vgg16.py
• Class names - imagenet_classes.py
• Example input - laska.png
上述四个文件下载链接如下:
https://www.cs.toronto.edu/~frossard/vgg16/vgg16_weights.npz
https://www.cs.toronto.edu/~frossard/vgg16/vgg16.py
https://www.cs.toronto.edu/~frossard/vgg16/imagenet_classes.py
https://www.cs.toronto.edu/~frossard/vgg16/laska.png
To test run it, download all files to the same folder and run python vgg16.py
若要测试运行它,请将所有文件下载到同一文件夹并运行命令。
Introduction
介绍
Very Deep Convolutional Networks for Large-Scale Image Recognition
https://arxiv.org/abs/1409.1556
ImageNet
http://image-net.org/
Caffe to TensorFlow
https://github.com/ethereon/caffe-tensorflow
VGG是牛津大学K. Simonyan和A. Zisserman提出的一种卷积神经网络模型,用于“大规模图像识别的深度卷积网络”。该模型在ImageNet中达到92.7%的top-5测试精度,ImageNet是属于1000个类的1400万个图像的数据集。
在这个简短的帖子中,我们提供了VGG16的实现和从原来的Caffe模型转换为TensorFlow的权重。
Architecture
结构
VGG16结构图如下
我们在TensorFlow文件中的vgg16.py进行编码。注意,我们包括一个预处理层,该层采用具有0~255范围内的像素值的RGB图像,并减去平均图像值(在整个ImageNet训练集上计算)。
Weights
权重
我们使用作者的GitHub配置文件使用专门的工具来转换CAFE权重。进行了一些后处理,以确保模型符合TensorFlow标准。最后,我们在vgg16_weights.npz中得到了可用的权重。
Class Names
类名
为了将模型的输出与类名相关联,我们可以在 imagenet_classes.py 中使用映射。
Future Content
未来内容
我们鼓励您熟悉这个模型,因为它被广泛使用,并且将是未来知识转移的基础,卷积神经网络的反向传播和其他有趣的话题。