机器学习实战--naive bayes和logistic Regression

本文深入探讨了两种概率分类方法:朴素贝叶斯和逻辑回归。朴素贝叶斯基于特征间的独立假设,通过计算条件概率进行分类,尽管理论上有局限但在实践中效果良好。逻辑回归使用sigmoid函数作为分类器,通过梯度下降找到最佳回归系数。这两种算法各有优缺点,适用于不同的场景。
摘要由CSDN通过智能技术生成

前面我们学到的knn和trees都是能确切的确定例子属于哪一类,这一节我们将介绍一种用概率来进行分类的方式。

一、朴素贝叶斯(naive bayes)

用一句话介绍就是,待测例子属于哪一类的可能性更大,就将待测例子归为哪一类。
先简单的介绍一下概率的基本知识:
假设一共有两类c=0,1;如果p(c=0)>p(c=1),那我们就将该例归为c=0类。反之,归为c=1类。对于多类问题采用相似的解决方法。
而bayes的分类依据采用的是条件概率,p(c|w) = p(w|c)*p(c)/p(w)。其中p(c|w)表示,已知w的概率分布时,属于ci的概率。p(w|c)表示,已知所属类别时,w的概率分布。
这里w是一个多元数据w=(w0, w1, w2,….)。
在bayes理论中,如果p(c=0|w)>p(c=1|w),我们就将该例归为c=0类,于是就衍生出了怎么计算p(c|w)的问题,这里p(c)是各类别出现的概率,很好计算。p(w)相同,可以不用计算。问题在于怎么计算p(w|c),这时便做了一个特征相互独立假设,即w0, w1, …之间是相互独立,于是就有了p(w|c)=p(w0|c)*p(w1|c)….
这在理论上说不通,但实际的效果却很好(尤其在文档分类上),这就是naive bayes的“naive”所在。
更详细的概率知识,请参考其它
算法优点:
1、便于处理不完全的数据
2、能充分的利用领域的先验知识
3、在数据较少的情况下仍然有效,可进行多酚类问题
算法缺点:
对于输入的数据格式较为敏感。
算法步骤:
这里以文档分类为例
1、将文档转化为对应的单词向量
2、将单词向量转化为机器可识别的向量
3、训练:根据条件概率公式,计算对应的概率,或概率向量p(w|c), p(c)
4、测试:根据3中得到的训练参数,测试算法。
主要算法实现:
1、创建邮件列表,和对应的类别。

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值