矩阵快速幂 求Fibonacci数列poj3070

原作者博客地址:http://www.cnblogs.com/dongsheng/archive/2013/06/02/3114073.html

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

Source

分析:通过这道题,不仅学会了矩阵的快速幂的做法,同时也提供了求Fibonacci的高效算法

#include <cstdio>
 #include <iostream>
 
 using namespace std;
 
 const int MOD = 10000;
 
 struct matrix
 {
     int m[2][2];
 }ans, base;
 
 matrix multi(matrix a, matrix b)
 {
     matrix tmp;
     for(int i = 0; i < 2; ++i)
     {
         for(int j = 0; j < 2; ++j)
         {
             tmp.m[i][j] = 0;
             for(int k = 0; k < 2; ++k)
                 tmp.m[i][j] = (tmp.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD;
         }
     }
     return tmp;
 }
 int fast_mod(int n)  // 求矩阵 base 的  n 次幂 
 {
     base.m[0][0] = base.m[0][1] = base.m[1][0] = 1;
     base.m[1][1] = 0;
     ans.m[0][0] = ans.m[1][1] = 1;  // ans 初始化为单位矩阵 
     ans.m[0][1] = ans.m[1][0] = 0;
     while(n)
     {
         if(n & 1)  //实现 ans *= t; 其中要先把 ans赋值给 tmp,然后用 ans = tmp * t 
         {
             ans = multi(ans, base);
         }
         base = multi(base, base);
         n >>= 1;
     }
     return ans.m[0][1];
 }
 
 int main()
 {
     int n;
     while(scanf("%d", &n) && n != -1)
     {   
         printf("%d\n", fast_mod(n));
     }
     return 0;
 }




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值