Pandas Series

  •  Series与numpy的ndarray相比,多了一些更好用的函数,如:describe()
  • 与ndarray相似的地方:

下标方式访问:s[10]、s[3:10]...

for循环:for item in s

向量计算:+、-、*、/...

科学函数:mean\sum\max...

比python list快

import pandas as pd
a=pd.Series([1,2,3,4,5,6,7,8,9,10])
a.describe()
count    10.00000   ---个数
mean      5.50000   ---均值
std       3.02765   ---方差
min       1.00000   ---最小值
25%       3.25000   ---1/4处,第一四分位点
50%       5.50000   ---2/4处,第二四分位点
75%       7.75000   ---3/4处,第三四分位点
max      10.00000   ---最大值
dtype: float64      ---数据类型
print (a[2])
for i in a:
    print (i)
a.mean()
3
1
2
3
4
5
6
7
8
9
10
5.5
import pandas as pd
def re_judge(var1,var2):#定义判断函数
    mean1=var1.mean() #定义变量的均值
    mean2=var2.mean() 
    #same_re也是一个由若干变量组成了series,其中的具体变量为true或false
    same_re=((var1>mean1)&(var2>mean2)|((var1<mean1)&(var2<mean2)))#都大于或都小于均值则返回到same_re
    print (same_re) #打印返回的series
    return(len(same_re[same_re==True]),len(same_re[same_re==False]))#返回满足上述相关条件的元素个数,返回的元组
area=pd.Series([67.5,32,135,84,200,62,101,25])
price=pd.Series([550,260,800,620,1300,902,1100,400])
print (re_judge(area,price))#打印(相关性强的数据个数,相关性弱的数据个数)
print (area.mean())
print (price.mean())
0     True
1     True
2     True
3     True
4     True
5    False
6     True
7     True
dtype: bool
(7, 1)
88.3125
741.5

 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页