coze图像流:单词卡片生成Bot

目录

① 进入图像流

②创建一个全新的图像流

③在开始的节点增加输入变量

④添加图像生成组件

⑤增加一个画布节点,将内容进行组装

⑥ 接下来再美化一下,比如字体的大小。

​编辑

⑦ 创建一个工作流,串联起图片流,并将内容补全。

⑧ 用bot进行封装


设计一个使用Coze图像流的单词卡片生成Bot

① 进入图像流

图像流的入口可以通过扣子coze.cn的个人空间页面,图像流菜单

②创建一个全新的图像流

右上角点击创建图像流

输入名称和描述

③在开始的节点增加输入变量

为了更好的控制图像流的输入,增加两个变量。

word: 单词

word_content: 单词和图片的关联描述 (测试图像流时可以手动填写,后续对接工作流后,可以让大模型直接生成)

④添加图像生成组件

增加一个提示词优化组件,以及增加一个图像生成的组件。

并通过图像流的节点联接的方式,将开始-提示词优化-图像生成连起来。

变量的传递包括:

提示词优化的输入为开始节点的word_content.

图像生成的输入为提示词优化节点的输出data.

可以做个小测试,点击右上角的试运行,输入参数的值,看下效果。

⑤增加一个画布节点,将内容进行组装

首先添加一个画布节点,点击预览,进入预览界面,调整尺寸为手机卡片的样式,比例设计为9:16,添加一个背景图片。

其次在画板上增加输入元素。

word,开始节点的word变量

word_content,开始节点的word_content变量

img,生图节点的data输出变量

然后在画板上手动排版,移动各元素的位置。

比如将word放在最上面。

将word_content放中间。

将img放在最下方。

测试一下,看看效果。

可以看到,已经具备卡片的形状了,而且也可以自动生成图片,按照排版输出。

⑥ 接下来再美化一下,比如字体的大小。

成品展示:

提醒,图像流创建好了,记得点发布哦。如果不发布,后续的操作无法正常引用。

⑦ 创建一个工作流,串联起图片流,并将内容补全。

还记得第3步的时候,有两个变量吗?word,和word_content。

现在用一个工作流来搞定这两个变量。

word可以让用户输入。

word_content可以用大模型生成。

我们回到个人空间,创建一个新的工作流

然后在工作流的开始节点先设定一个参数为word,用来接收单词。

增加一个大模型节点,用来生成word_content.

接着再将图像流引入,点左侧节点,选择图像流,就可以看到之前发布的图像流了。

添加图像流后,将节点进行联接,并选取参数。

这个时候可以测试一下,是否能正常生成图片。

好了, 已经生成了,接下来就是输出了。

完成的工作流展示如下。

工作流全景图

⑧ 用bot进行封装

为了让我们的图像流能被方便的使用,可以用coze的bot进行封装,创建一个bot,添加好工作流,并且指令里强调使用工作流就可以了。

Shell

# 角色
你是一个单词处理助手,能够接收用户输入的单词,并将其交给工作流‘word_card’以获取相应结果。
​
## 技能
### 技能 1:处理单词
1. 当用户输入一个单词时,立即将其传递给工作流‘word_card’。
2. 等待工作流‘word_card’的输出结果。
3. 将结果呈现给用户。
​
## 限制
- 只处理用户输入的单个单词,拒绝处理其他类型的输入。
- 严格按照流程将单词交给工作流‘word_card’,不得使用其他方式处理。
- 仅输出工作流‘word_card’返回的结果,不得添加额外内容。

最后将Bot发布出来。

### CoZe 平台图像生成文本功能详解 #### 工具概述 CoZe平台提供了一种强大的图像处理能力,能够实现从图像到文本的转换。这种特性尤其适用于需要自动解析和理解视觉内容的应用场景。 #### 功能特点 在CoZe平台上执行图像转文本操作时,用户可以通过构建特定的工作流程来完成这一目标。对于图像生成文本而言,这通常涉及到定义输入源(即待分析的图片),以及指定如何解释这些图形数据并将其转化为有意义的文字说明[^3]。 #### 实现过程 为了利用该平台上的图生文服务,建议按照如下方式配置: - **准备素材**:先准备好要用于训练或者即时转化成文字描述的照片集; - **创建图像流**:类似于其他类型的自动化流水线,在此阶段需设计好整个处理链条,包括但不限于选择合适的预处理器、设定必要的参数选项等; - **集成AI组件**:借助内置的大规模机器学习算法库,使系统学会识别各类物体特征,并据此产出相应的语句表达[^2]。 - **优化输出质量**:经过初步调试之后,可能还需要不断调整模型结构或是微调超参以提高最终结果准确性。 ```python # 示例Python脚本片段展示如何发起一次简单的图生文请求 import coze_sdk as sdk client = sdk.Client(api_key='your_api_key') response = client.image_to_text(image_path='./example.jpg') print(response['description']) ``` 上述代码展示了怎样通过官方提供的SDK接口发送一张本地存储的JPEG格式文件至服务器端进行分析,随后获取返回的结果字符串。 #### 应用实例 当应用于教育领域中的单词记忆辅助工具开发时——比如`coze图像流单词卡片生成Bot`项目里提到的情况——就可以让程序根据上传来的插画自动生成配套的学习资料,从而减轻教师备课负担的同时也增加了课堂互动趣味性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值