手把手带你学扣子Coze之图像生成插件

图像生成节点用于生成图片。通过图像生成节点,你可以将一段文字转为图片,也可以根据参考图生成图片。

模型设置

选择用于生成图片的模型,并设置生成的图像比例和质量。

  • 模型:扣子提供多种多预训练的模型供你挑选,每个模型出图的风格不同,例如专用于动漫场景的动漫模型、面部处理更加细致自然的人像模型等,你可以选择不同的模型后,分别试运行体验模型效果。

  • 比例:生成的图像比例,默认为 1024 × 1024,支持的宽高范围为 [512,1536]

  • 生成质量:数值越大画面越精细,生成时间越久。默认为 25,范围为 [1,40]。

参考图

生成图像的参考图,支持设置多个参考图。

简单来说:这个功能可以让你上传几张图片作为 “样板”,然后 AI 会模仿这些图的特点,自动生成新图片。比如你上传一张风景照和一张卡通图,AI 就能画出同时带有这两种风格的新作品。

  • 参考模式:指定模型如何参考指定图片,支持画面的空间关系、人物姿势等多个参考模式,例如你可以根据页面提示选择一个合适的模式。

    • 这个功能相当于让 AI「照葫芦画瓢」,但你可以指定重点模仿的方向。比如:

      • 空间模式:AI 会记住你上传图片里物体位置(比如左边有棵树,右边有座房子),生成的新图会保持这种布局。

      • 姿势模式:AI 会模仿图中人物的动作(比如叉腰站姿),生成不同人物但姿势相似的新图。

    • 操作就像点菜单:在生成页面选一个你需要的模式,AI 就会按这个方向去模仿你的参考图。

  • 参考图:参考图的模型参考图可以使用开发者上传的图片,也可以引用上游节点输出的图片。

  • 参考程度:参考程度越高,图像越相似。

支持上传多张参考图,并制定不同的参考程度

输入

提示词中可使用的输入参数,用于动态传入内容。输入参数可以指定为一个固定值,也可以引用上游节点的输出。

比如:

  • 批量生成带不同人名的海报,只需把 "名字" 参数关联到 Excel 表格

  • 用前一步 AI 生成的配色方案,自动填入当前绘画的配色参数

提示词

正向提示词

用于描述你想要出现在画面中的内容。比如:生成xx...

反向提示词

用于描述你的画面中不想生成的内容

输出

data变量为生成的图片(通常为url)

msg为生成状态

如果对生成结果不满意,请优化提示词。

比如我对上面生成的这张照片就不是很满意。于是我优化了一下提示词

 

在温馨舒适的卧室里,阳光透过轻薄的窗帘,洒下柔和的光影,照亮了柔软的床铺。小埋身着可爱的家居服,慵懒地趴在床上,脸颊微微泛红,双眼透着惬意与放松。她的双臂紧紧抱着一个蓬松柔软的白色抱枕,那抱枕仿佛是她此刻最温暖的依靠 ,与她一起沉浸在这惬意的时光里。

是不是比上一张强了很多?

根据你的要求,不断修改提示词 直到生成出满意的图片

示例

文生图

通过文字描述生成一张动漫风格的图片。模型选择动漫,引用开始节点的用户原始输入作为正向提示词,并添加一系列正向的关键词作为提示词。负向提示词为 low quality,表示避免低质量图像。节点配置及试运行结果如下:

图生图

通过参考图片生成一张相同人物造型和姿势的动漫图片。模型选择动漫,参考图上传一张想要的人物造型与动作图片。引用开始节点的用户原始输入作为正向提示词。负向提示词为 low quality,表示避免低质量图像。节点配置及试运行结果如下:

 

文章转载自:https://gwl1554ppni.feishu.cn/wiki/G8YSwgk7MiW7rbkxCLcc35VjnPf
欢迎关注公众号【AI技术开发者】

 

### CoZe 图像生成工作流实现步骤 #### 创建图像流 当点击创建图像流时,平台提供多种现成模板供选择。这些模板可用于生成不同类型的创意图片,如穿搭图、神奇角色、名画风写真等[^1]。 #### 自定义赛博风格Bot配置 对于特定风格的需求,比如赛博朋克风格,可以使用预设的AI模型——174-Coze自定义赛博风格Bot。该模型基于赛博风格大师的绘画技巧和算法,在虚拟环境中模拟手绘效果或直接在数字画板上创作[^2]。 #### 处理输入源图像 整个处理流程始于接收用户的原始图片作为输入(`source_image`)。此阶段会启动一系列自动化操作来优化和转换这张基础照片[^3]。 #### 应用美化滤镜 随后进入美颜节点,这里会对传入的照片应用一些基本的美化调整,使人物看起来更加自然美观。 #### 替换背景颜色 为了适应不同的应用场景需求,接下来会有两条分支路径同时运行:一条保持原貌不变;另一条则将背景替换为蓝色或白色底色版本。这一步骤涉及到了具体的模板匹配技术以及高效的图像合成方法。 #### 输出最终成果 最后到达结束节点,系统根据前面几步的操作结果组装好成品,并按照预定的方式返回给用户查看或下载。 ```python def coze_image_generation_workflow(source_image, style="cyberpunk"): """ Simulate the workflow of generating images using CoZe platform. Args: source_image (str): Path to the original image file provided by user. style (str): Desired output style, default is 'cyberpunk'. Returns: str: Message indicating completion and location of generated image. """ # Step 1: Select template based on chosen style selected_template = select_template(style) # Step 2: Apply beautification filters enhanced_image = apply_beautify_filters(source_image) # Step 3: Prepare two versions with different backgrounds blue_background_version = change_background_color(enhanced_image, "blue") white_background_version = change_background_color(enhanced_image, "white") # Step 4: Combine all elements into final product result_images = combine_elements(selected_template, [blue_background_version, white_background_version]) return f"Image generation completed! Please check your results at {result_images}" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值