Cosine similarity && cosine distance

The term cosine distance is often used for the complement in positive space, that is: {\displaystyle D_{C}(A,B)=1-S_{C}(A,B),} {\displaystyle D_{C}(A,B)=1-S_{C}(A,B),} where {\displaystyle D_{C}} D_C is the cosine distance and {\displaystyle S_{C}} S_{C} is the cosine similarity. It is important to note, however, that this is not a proper distance metric as it does not have the triangle inequality property—or, more formally, the Schwarz inequality—and it violates the coincidence axiom; to repair the triangle inequality property while maintaining the same ordering, it is necessary to convert to angular distance (see below).

One advantage of cosine similarity is its low-complexity, especially for sparse vectors: only the non-zero dimensions need to be considered.

Other names of cosine similarity are Orchini similarity and the Tucker coefficient of congruence; Ochiai similarity (see below) is cosine similarity applied to binary data.

From https://en.wikipedia.org/wiki/Cosine_similarity

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值