神经网络的传播过程

本文详细阐述了神经网络的前向传播和反向传播过程,重点解析了误差反向传播在训练中的作用,帮助读者深入理解输出神经元预测值、误差及真实值之间的关系,并涉及激活函数的导数在神经元前一输出中的应用。
摘要由CSDN通过智能技术生成

转自 http://techeffigytutorials.blogspot.co.uk/2015/01/neural-network-illustrated-step-by-step.html

前向传播过程

I 1,I 2= 输入
f() = 激活函数(Tanh(), Sigmoid()或者其他)
W = 当前神经元的权重
Wb = 偏置权重
N = 当前神经元的输出

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值