七种RAG架构cheat sheet!🔥
RAG 即检索增强生成(Retrieval - Augmented Generation ),是一种结合检索技术和生成模型的人工智能方法。
Weaviate 是一个开源的向量数据库,专为 AI 原生应用设计,能够高效地存储和检索数据对象及其向量嵌入。它结合了语义搜索、结构化过滤和机器学习集成,能够处理跨多种数据类型(如文本、图像等)的复杂查询。
Weaviate 面向的就是RAG使用场景,给出了七种RAG架构cheat sheet。
RAG 分为两个阶段:索引阶段 和 查询阶段,每个阶段都有超多硬核技术加持!💡
索引阶段 📂
- Embedding model:嵌入模型,把数据变成低维向量,计算机秒懂!
- Generative model:生成模型,文本、图像随便生成,创意无限!
- Reranker model:重排序模型,检索结果重新排,相关性拉满!
- Vector database:向量数据库,存储向量数据,检索快到飞起!
- Prompt template:提示模板,指导模型生成特定格式,输出超精准!
查询阶段 🔍
- Multimodal embedding model:多模态嵌入模型,图像、文本全搞定,统一嵌入表示!
- Multimodal generative model:多模态生成模型,多种数据结合生成,输出超丰富!
- LLM Graph Generator:大语言模型图生成器,生成图结构数据,复杂关系轻松搞定!
- Graph database:图数据库,存储图结构数据,图查询操作超高效!
- AI agent:AI 代理,代表用户执行任务,决策交互超智能!
Weaviate 的 7 种 RAG 架构 🧩
以下是Weaviate官方总结的七种RAG(Retrieval-Augmented Generation)架构的核心要点速查表,涵盖核心原理、优缺点及适用场景。
1. Naive RAG(朴素RAG)
- 核心原理:基于文档分块检索,直接将检索结果输入生