python-numpy库笔记

这篇博客详细介绍了Python中的NumPy库,包括对象、数据类型、数组属性的使用,以及如何创建和操作不同类型的数组,如从现有数组或数值范围创建新数组。
摘要由CSDN通过智能技术生成

对象

import numpy as np

a = np.array([1, 2, 3])
print(a)
# 多于一个维度
b = np.array([[1, 2], [3, 4]])
print(b)
# 最小维度,指定生成数组的最小维度
c = np.array([1, 2, 3, 4, 5], ndmin=2)
print(c)
# dtype参数,数组元素的数据类型,可选
d = np.array([1, 2, 3], dtype=complex)
print(d)

数据类型

import numpy as np

# 使用标量类型
dt = np.dtype(np.int32)
print(dt)
# int8, int16, int32, int64 四种数据类型可以使用字符串 'i1', 'i2','i4','i8' 代替
dt = np.dtype('i4')
print(dt)
# 字节顺序标注
# 字节顺序是通过对数据类型预先设定 < 或 > 来决定的。 < 意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。> 意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。
dt = np.dtype('>i4')
print(dt)
# 首先创建结构化数据类型
dt = np.dtype([('age', np.int8)])
print(dt)
# 将数据类型应用于 ndarray 对象
dt = np.dtype([('age', np.int8)])
a = np.array([(10,), (20,), (30,)], dtype=dt)
print(a)
# 类型字段名可以用于存取实际的 age 列
dt = np.dtype([(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋努力的野指针

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值