对象
import numpy as np
a = np.array([1, 2, 3])
print(a)
# 多于一个维度
b = np.array([[1, 2], [3, 4]])
print(b)
# 最小维度,指定生成数组的最小维度
c = np.array([1, 2, 3, 4, 5], ndmin=2)
print(c)
# dtype参数,数组元素的数据类型,可选
d = np.array([1, 2, 3], dtype=complex)
print(d)
数据类型
import numpy as np
# 使用标量类型
dt = np.dtype(np.int32)
print(dt)
# int8, int16, int32, int64 四种数据类型可以使用字符串 'i1', 'i2','i4','i8' 代替
dt = np.dtype('i4')
print(dt)
# 字节顺序标注
# 字节顺序是通过对数据类型预先设定 < 或 > 来决定的。 < 意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。> 意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。
dt = np.dtype('>i4')
print(dt)
# 首先创建结构化数据类型
dt = np.dtype([('age', np.int8)])
print(dt)
# 将数据类型应用于 ndarray 对象
dt = np.dtype([('age', np.int8)])
a = np.array([(10,), (20,), (30,)], dtype=dt)
print(a)
# 类型字段名可以用于存取实际的 age 列
dt = np.dtype([(