机器学习笔记

本文介绍了机器学习的基础,包括分类、回归和泛化,并详细探讨了深度学习,特别是图像识别和预训练模型的应用。此外,还讲解了神经网络的基本结构、训练过程,以及迁移学习的概念和微调模型的重要性。
摘要由CSDN通过智能技术生成

机器学习与深度学习

什么是机器学习

机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
机器学习的两大任务:分类、回归

分类

基于四种特征的鸟物种分类表:在这里插入图片描述
假定我们可以得到所需的全部特征信息,该如何判断飞入进食器的鸟是不是象牙喙啄木鸟呢?这个任务就是分类

回归

机器学习的另一项任务是回归,它主要用于预测数值型数据
例如数据拟合曲线:通过给定数据点的最优拟合曲线。分类和回归都属于监督学习(学习数据的答案已知)。
在这里插入图片描述

泛化

机器学习通过学习已有的信息,来对未知的信息进行推断,这个过程称为泛化。
在这里插入图片描述

深度学习

深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层(layer)中进行学习,这些层对应于越来越有意义的表示。
“深度学习”中的“深度”指的并不是利用这种方法所获取的更深层次的理解,而是指一系列连续的表示层。数据模型中包含多少层,这被称为模型的深度(depth)。
在这里插入图片描述

如何用深度学习进行图像识别

在这里插入图片描述

预训练模型

解决上述问题的一个可行方法是,使用专业团队预先训练好的模型,在别人成熟的模型的基础上工作。分为2种情形:

  1. 直接使用预训练模型,最简单的方式,但是有局限性,例如,这个模型只能识别猫和狗的话,你想识别马就不行了。
  2. 在预训练模型的基础上,使用自己的数据继续训练,这种方式也称为迁移学习。

人脸检测

# -*- coding: utf-8 -*-
import paddlehub as hub

test_img_path = "test_face_detection1.jpg"
# 加载预训练模型
module = hub.Module(name="ultra_light_fast_generic_face_detector_1mb_640")
input_dict = {
   "image": [test_img_path]}
# 人脸检测预测
results = module.face_detection(data=input_dict)
for result in results:
    print(result)  # 结果是检测到的脸的矩形信息
# 在图上绘制矩形标注人脸
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw

plt.figure(figsize=(10, 10))  # 设置画布大小
im = Image.open(test_img_path)
draw = ImageDraw.Draw(im
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋努力的野指针

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值