机器学习之基本数据类型

在这里插入图片描述

MLlib支持存储在单个机器上的局部向量和矩阵,以及由一个或多个RDD支持的分布式矩阵。 局部向量和局部矩阵是用作公共接口的简单数据模型。 底层线性代数操作由Breeze提供。 在监督学习中使用的训练示例在MLlib中称为“标记点”。


一、本地向量

局部向量具有整数类型和基于0的索引和双类型值,存储在单个机器上。 MLlib支持两种类型的局部向量:密集和稀疏。 密集向量由表示其条目值的双数组支持,而稀疏向量由两个并行数组支持:索引和值。 例如,矢量(1.0,0.0,3.0)可以以密集格式表示为[1.0,0.0,3.0],或者以稀疏格式表示为(3,[0,2],[1.0,3.0]),其中3是 矢量的大小。

//创建一个稠密本地向量

Vector v1 = Vectors.dense(0.0, 10.0, 0.5);

//创建一个稀疏向量

Vector v2 = Vectors.sparse(3, new int[]{0, 1}, new  double[]{-2.0, 2.3});

二、向量标签(标记点)(LabeledPoint)

向量标签LabeledPoint是一种带有标签(Label/Response)的本地向量,它可以是稠密或者是稀疏的。 在MLlib中,标记点用于监督学习算法。由于标签是用双精度浮点型来存储的,故标注点类型在回归(Regression)和分类(Classification)问题上均可使用。例如,对于二分类问题,则正样本的标签为1,负样本的标签为0,而对于多类别的分类问题来说,标签则应是一个以0开始的索引序列:0, 1, 2 ...

//创建一个标签为1.0(分类中可视为正样本)的稠密向量标注点

LabeledPoint L1 = new LabeledPoint(1.0,Vectors.dense(2.0, 3.0, 3.0));

//创建一个标签为0.0(分类中可视为负样本)的稀疏向量标注点

LabeledPoint L2 = new LabeledPoint(0.0,Vectors.sparse(3, new int[]{0, 1}, new  double[]{-2.0, 2.3}));

在实际的机器学习问题中,稀疏向量数据是非常常见的,MLlib提供了读取LIBSVM格式数据的支持,该格式被广泛用于LIBSVM、LIBLINEAR等机器学习库。在该格式下,每一个带标注的样本点由以下格式表示:

label    index1:value1   index2:value2   index3:value3  ...

其中label是该样本点的标签值,一系列index:value对则代表了该样本向量中所有非零元素的索引和元素值。这里需要特别注意的是,index是以1开始并递增的。 MLlib在org.apache.spark.mllib.util.MLUtils工具类中提供了读取LIBSVM格式的方法loadLibSVMFile,其使用非常方便。

SparkSession spark = SparkSession.builder().appName("VectorsTest").master("local[2]").getOrCreate();

SparkContext sparkContext = spark.sparkContext();

JavaRDD<LabeledPoint> examples=MLUtils.loadLibSVMFile(sparkContext,"data/mllib/sample_libsvm_data.txt").toJavaRDD();

(0.0,(692,[127,128,129,130,131,154,155,156,157,158,159,181,182,183,184,185,186,187,188,189,207,208,209,210,211,212,213,214,215,216,217,235,236,237,238,239,240,241,242,243,244,245,262,263,264,265,266,267,268,269,270,271,272,273,289,290,291,292,293,294,295,296,297,300,301,302,316,317,318,319,320,321,328,329,330,343,344,345,346,347,348,349,356,357,358,371,372,373,374,384,385,386,399,400,401,412,413,414,426,427,428,429,440,441,442,454,455,456,457,466,467,468,469,470,482,483,484,493,494,495,496,497,510,511,512,520,521,522,523,538,539,540,547,548,549,550,566,567,568,569,570,571,572,573,574,575,576,577,578,594,595,596,597,598,599,600,601,602,603,604,622,623,624,625,626,627,628,629,630,651,652,653,654,655,656,657],[51.0,159.0,253.0,159.0,50...

每个标注点共有692个维,其中第127列对应的值是51.0,第128列对应的值是159.0,依此类推。

三、本地矩阵

局部矩阵具有整数类型的行和列索引以及双类型值,存储在单个机器上。 MLlib支持密集矩阵,其条目值以列主要顺序存储在单个双数组中,以及稀疏矩阵,其非零条目值以列主要顺序存储在压缩稀疏列(CSC)格式中。 例如,以下密集矩阵:

在这里插入图片描述

存储在具有矩阵大小(3,2)的一维阵列[1.0,3.0,5.0,2.0,4.0,6.0]中。

//创建稠密矩阵((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))

Matrix d = Matrices.dense(3, 2, new  double[]{1.0, 3.0, 5.0, 2.0, 4.0, 6.0});

//创建稀疏矩阵((9.0, 0.0), (0.0, 8.0), (0.0, 6.0))

Matrix s = Matrices.sparse(3, 2, new  int[]{0, 1,3}, new int[]{0, 1,1}, new  double[]{9.0, 6.0,8.0});

这里,创建一个3行2列的稀疏矩阵[ [9.0,0.0], [0.0,8.0], [0.0,6.0]]。Matrices.sparse的参数中,3表示行数,2表示列数。第1个数组参数表示列指针,即每一列元素的开始索引值, 第二个数组参数表示行索引,即对应的元素是属于哪一行;第三个数组即是按列先序排列的所有非零元素,通过列指针和行索引即可判断每个元素所在的位置。比如取每个数组的第2个元素为2,1,6,表示第2列第1行的元素值是6.0。

四、分布式矩阵

分布式矩阵具有长类型的行和列索引以及双类型值,分布式地存储在一个或多个RDD中。选择正确的格式来存储大型和分布式矩阵非常重要。将分布式矩阵转换为不同的格式可能需要全局混洗,这非常昂贵。到目前为止已经实现了四种类型的分布式矩阵。

基本类型称为RowMatrix。 RowMatrix是行方向的分布式矩阵,没有有意义的行索引,例如特征向量的集合。它由行的RDD支持,其中每行是本地向量。我们假设RowMatrix的列数不是很大,因此单个本地向量可以合理地传递给驱动程序,也可以使用单个节点进行存储/操作。 IndexedRowMatrix类似于RowMatrix,但具有行索引,可用于标识行和执行连接。 CoordinateMatrix是以坐标列表(COO)格式存储的分布式矩阵,由其条目的RDD支持。 BlockMatrix是由MatrixBlock的RDD支持的分布式矩阵,它是(Int,Int,Matrix)的元组。

4.1、行矩阵(RowMatrix)

RowMatrix是面向行的分布式矩阵,没有有意义的行索引,由其行的RDD支持,其中每行是本地向量。 由于每一行都由局部向量表示,因此列数受整数范围的限制,但在实践中它应该小得多。

 SparkConf conf = new  SparkConf().setMaster("local").setAppName("DistributedMatrixRowMatrix"); 

JavaSparkContext jsc = new  JavaSparkContext(conf); 

JavaRDD<Vector> rows =  jsc.parallelize(Arrays.asList(Vectors.dense(4.0,5.0,6.0),Vectors.dense(2.0,12.0,6.0)));

 RowMatrix matrix = new  RowMatrix(rows.rdd()); 

System.out.println(matrix.numCols()); 

System.out.println(matrix.numRows());

 System.out.println(matrix.rows().first());

 System.out.println("行数:"+matrix.computeColumnSummaryStatistics().count()); 

System.out.println("最大向量:"+matrix.computeColumnSummaryStatistics().max());

 System.out.println("方差向量:"+matrix.computeColumnSummaryStatistics().variance()); 

System.out.println("L1范数向量:"+matrix.computeColumnSummaryStatistics().normL1());

在获得RowMatrix的实例后,我们可以通过其自带的computeColumnSummaryStatistics()方法获取该矩阵的一些统计摘要信息,并可以对其进行QR分解,SVD分解和PCA分解,这一部分内容将在特征降维的章节详细解说,这里不再叙述。

4.2、索引行矩阵(IndexedRowMatrix)

IndexedRowMatrix类似于RowMatrix但具有有意义的行索引。 它由索引行的RDD支持,因此每行由其索引(long-typed)和本地向量表示。

JavaRDD<IndexedRow> rows2 =  jsc.parallelize(Arrays.asList(new IndexedRow(1,  Vectors.dense(1.0, 2.3, 2.6)), new IndexedRow  (2, Vectors.dense(1.0,2.3,50.6))));

IndexedRowMatrix mat2 =  new  IndexedRowMatrix(rows2.rdd());

4.3、坐标矩阵(Coordinate Matrix)

CoordinateMatrix是由其条目的RDD支持的分布式矩阵。 每个条目都是(i:Long,j:Long,value:Double)的元组,其中i是行索引,j是列索引,value是条目值。 只有当矩阵的两个维度都很大且矩阵非常稀疏时,才应使用CoordinateMatrix。

JavaRDD<MatrixEntry> rows3 =  jsc.parallelize(Arrays.asList(new  MatrixEntry(0,0,1.0), new MatrixEntry  (1,0,2.0)));

CoordinateMatrix mat3 = new  CoordinateMatrix(rows3.rdd());

4.4、分块矩阵(Block Matrix)

BlockMatrix是由MatrixBlocks的RDD支持的分布式矩阵,其中MatrixBlock是((Int,Int),Matrix)的元组,其中(Int,Int)是块的索引,而Matrix是子 - 给定索引处的矩阵,其大小为rowsPerBlock x colsPerBlock。 BlockMatrix支持添加和乘以另一个BlockMatrix等方法。 BlockMatrix还有一个辅助函数validate,可用于检查BlockMatrix是否设置正确

在这里插入图片描述

JavaRDD<MatrixEntry> rows4 =  jsc.parallelize(Arrays.asList(new  MatrixEntry(0,0,1.0), new MatrixEntry  (1,0,2.0)));

CoordinateMatrix mat = new  CoordinateMatrix(rows4.rdd());

BlockMatrix matA =  mat.toBlockMatrix().cache();


参考资料:

 http://spark.apache.org/docs/latest/mllib-data-types.html

  • 10
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 8
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值