神经网络模型参数辨识,神经网络信号识别

本文探讨了神经网络参数的确定原则,包括网络节点、初始权值、训练速率、动态系数、允许误差、迭代次数和Sigmoid参数。此外,还讨论了卷积神经网络在参数预测和对象识别中的应用,以及BP神经网络在系统辨识中的问题。通过MATLAB编程实现神经网络模型,用于确定参数关联性,并解释了全连接层参数的训练过程。
摘要由CSDN通过智能技术生成

神经网络参数如何确定

神经网络各个网络参数设定原则:①、网络节点 网络输入层神经元节点数就是系统的特征因子(自变量)个数,输出层神经元节点数就是系统目标个数。隐层节点选按经验选取,一般设为输入层节点数的75%。

如果输入层有7个节点,输出层1个节点,那么隐含层可暂设为5个节点,即构成一个7-5-1BP神经网络模型。在系统训练时,实际还要对不同的隐层节点数4、5、6个分别进行比较,最后确定出最合理的网络结构。

②、初始权值的确定 初始权值是不应完全相等的一组值。已经证明,即便确定 存在一组互不相等的使系统误差更小的权值,如果所设Wji的的初始值彼此相等,它们将在学习过程中始终保持相等。

故而,在程序中,我们设计了一个随机发生器程序,产生一组一0.5~+0.5的随机数,作为网络的初始权值。

③、最小训练速率 在经典的BP算法中,训练速率是由经验确定,训练速率越大,权重变化越大,收敛越快;但训练速率过大,会引起系统的振荡,因此,训练速率在不导致振荡前提下,越大越好。

因此,在DPS中,训练速率会自动调整,并尽可能取大一些的值,但用户可规定一个最小训练速率。该值一般取0.9。④、动态参数 动态系数的选择也是经验性的,一般取0.6~0.8。

⑤、允许误差 一般取0.001~0.00001,当2次迭代结果的误差小于该值时,系统结束迭代计算,给出结果。⑥、迭代次数 一般取1000次。

由于神经网络计算并不能保证在各种参数配置下迭代结果收敛,当迭代结果不收敛时,允许最大的迭代次数。⑦、Sigmoid参数该参数调整神经元激励函数形式,一般取0.9~1.0之间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值